Cancer genetic counsellor generates downstream revenue

2021 ◽  
Vol 872 (1) ◽  
pp. 8-8
Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 338 ◽  
Author(s):  
Matthew Richardson ◽  
Hae Jung Min ◽  
Quan Hong ◽  
Katie Compton ◽  
Sze Wing Mung ◽  
...  

New streamlined models for genetic counseling and genetic testing have recently been developed in response to increasing demand for cancer genetic services. To improve access and decrease wait times, we implemented an oncology clinic-based genetic testing model for breast and ovarian cancer patients in a publicly funded population-based health care setting in British Columbia, Canada. This observational study evaluated the oncology clinic-based model as compared to a traditional one-on-one approach with a genetic counsellor using a multi-gene panel testing approach. The primary objectives were to evaluate wait times and patient reported outcome measures between the oncology clinic-based and traditional genetic counselling models. Secondary objectives were to describe oncologist and genetic counsellor acceptability and experience. Wait times from referral to return of genetic testing results were assessed for 400 patients with breast and/or ovarian cancer undergoing genetic testing for hereditary breast and ovarian cancer from June 2015 to August 2017. Patient wait times from referral to return of results were significantly shorter with the oncology clinic-based model as compared to the traditional model (403 vs. 191 days; p < 0.001). A subset of 148 patients (traditional n = 99; oncology clinic-based n = 49) completed study surveys to assess uncertainty, distress, and patient experience. Responses were similar between both models. Healthcare providers survey responses indicated they believed the oncology clinic-based model was acceptable and a positive experience. Oncology clinic-based genetic testing using a multi-gene panel approach and post-test counselling with a genetic counsellor significantly reduced wait times and is acceptable for patients and health care providers.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 821
Author(s):  
Wanglong Qiu ◽  
Chia-Yu Kuo ◽  
Yu Tian ◽  
Gloria H. Su

Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.


2021 ◽  
Vol 28 ◽  
pp. 100275
Author(s):  
Stephen M. Modell ◽  
Caitlin G. Allen ◽  
Amy Ponte ◽  
Gail Marcus

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Fabienne Archer ◽  
Alexandra Bobet-Erny ◽  
Maryline Gomes

AbstractThe number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


2016 ◽  
Vol 140 (4) ◽  
pp. 825-832 ◽  
Author(s):  
Clara Bodelon ◽  
Hannah Oh ◽  
Nilanjan Chatterjee ◽  
Montserrat Garcia-Closas ◽  
Maya Palakal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document