Magnesium-chloride/magnesium-oxide/tacrolimus

2020 ◽  
Vol 1818 (1) ◽  
pp. 167-167
1999 ◽  
Vol 581 ◽  
Author(s):  
Q. Wei ◽  
C.M. Lieber

ABSTRACTA solution-based synthesis route was developed to produce large quantities of MgO nanorods. Hydrated basic magnesium chloride, which has needle-like crystal structure, was used as a precursor. A subsequent two-step transformation process with magnesium hydroxide as an intermediate product was used to preserve the morphology of the precursor to yield magnesium oxide nanorods. Scanning electron microscopy, powder X-ray diffraction and energy dispersive X-ray spectroscopy show that the products are very pure (>95%) crystalline MgO nanorods with diameters from 40 nm to 200 nm and lengths 10 microns or longer. High-resolution transmission electron microscopy and electron diffraction further reveal that these MgO nanorods are single crystals and that the rod axis is along the <110> crystal direction. A model for the structural transformation from hydrated basic magnesium chloride to magnesium oxide has been developed and compared to our experimental results. This solution-based process can be easily scaled-up, and is a low-cost source of pure magnesium oxide nanorods needed in many industrial applications, for example, as reinforcing agents in matrix composites and as flux-pinning centers in high-TC superconductors.


2020 ◽  
Vol 58 (3A) ◽  
pp. 113
Author(s):  
Thuy Nguyen Thi ◽  
Van Tran Dang Lan ◽  
Hoan Nguyen Xuan ◽  
Son Le Thi Bich ◽  
Mai Tran Thi Ngoc ◽  
...  

This study is aimed to evaluate the ability of magnesium oxide-coated carbonized rice hull (MCRH) material for ammonium removal in synthetic and real domestic wastewater. The MCRH material was prepared using waste rice hull from a household rice-processing factory and magnesium chloride salt via a simple mixing and annealing method. The material was then characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The effects of magnesium chloride modification and environmental condition such as initial ammonium concentration (20 – 100 mg/L), amount of adsorbent (0.8 –2.0 g/L), and adsorption time (0 –32 h) on the ammonium removal efficiency and adsorption capacity were investigated. Adsorption kinetic and isotherms were also studied for MCRH material. Results showed that magnesium oxide was successfully coated on carbonized rice hull with Mg/C molar ratio of 0.22. Ammonium adsorption isotherm fitted well to Langmuir model with maximum adsorption capacity of 65.36 mg/g. The adsorption was physical process and adsorption kinetic was best described by intra-particle diffusion model with the correlation coefficients ranged from 0.942 – 0.979. Ammonium removal feasibility of MCRH was proved through the treatment of real domestic wastewater containing 80.7±1.6 mg/L initial ammonia concentration with removal efficiency reached 86.8% and the effluent concentration met the allowable value (10 mg/L) as given by QCVN 14 : 2008/BTNMT (column B) - National technical regulation on domestic wastewater. Hence MCRH is potential as a cheap and abundant material in Vietnam and the material after adsorption accumulated ammonium would be the source of fertilizer for soil quality improvement.


2012 ◽  
Vol 188 ◽  
pp. 183-188 ◽  
Author(s):  
Zhan Hong Qiu ◽  
Jin Rong Feng ◽  
Lei Xiao ◽  
Zhi Yong Zeng

Based on the results of compression and bending tests of fifty eight magnesium oxychloride cement test cubes, the influences of two factors on compression and bending strength have been analyzed which includes the mole ratio of magnesium oxide and magnesium chloride and Baum degree of magnesium chloride solution. Softening coefficient of magnesium oxychloride cement and its influence factor have been studied by immersion test of twelve test cubes. The results show when the mole ratio of magnesium oxide and magnesium chloride is 7.0, the strength and water resistance performance of magnesium oxychloride cement is best. This work is very important to the application and dissemination of magnesium oxychloride cement bearing structural member in southern wetter areas of china.


2021 ◽  
Vol 37 (2) ◽  
pp. 74-83
Author(s):  
H.O Shittu ◽  
E Igiehon ◽  
A.O Eremwanarue ◽  
R.E Oijagbe ◽  
M.O Momoh ◽  
...  

In the present study, magnesium oxide (MgO) and magnesium chloride (MgCl) nanoparticles were phytosynthesized. Selected parameters like leaf extracts from Moringa oleifera, Vernonia amygadalina and Occimum gratissimum, time of reaction, precursor salts of magnesium oxide and magnesium chloride at varying concentrations, plant extracts to precursor salts volume ratio, pH of the medium and light sources were optimized for a better production of the nanoparticles. The phytosynthesized MgO and MgCl nanoparticles were characterized using UV- Vis spectroscopy technique. The study revealed that the leaf extracts of Moringa oleifera and Vernonia amyg dalina yielded more nanoparticles; the period of 24 hours incubation was enough time for nanoparticles formation and the 0.1 and 0.01 molar concentrations of the precursor salts gave optimal yields of the nanoparticles. The plant extracts at ratio two (2) to precursor salt solution at ratio three (3) resulted in better yield of the nanoparticles; the alkaline pH of 9 and 11 gave better nanoparticles synthesis and the visible light source and dark room environments were better exposure conditions for the nanoparticles formation. Keywords: Leaf extracts, Magnesium chloride nanoparticles, Magnesium oxide nanoparticles, Phytosynthesis, UV- Vis spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document