scholarly journals High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies

2019 ◽  
Vol 49 (12) ◽  
pp. 1923-1947 ◽  
Author(s):  
Damian J. Harper ◽  
Christopher Carling ◽  
John Kiely

Abstract Background The external movement loads imposed on players during competitive team sports are commonly measured using global positioning system devices. Information gleaned from analyses is employed to calibrate physical conditioning and injury prevention strategies with the external loads imposed during match play. Intense accelerations and decelerations are considered particularly important indicators of external load. However, to date, no prior meta-analysis has compared high and very high intensity acceleration and deceleration demands in elite team sports during competitive match play. Objective The objective of this systematic review and meta-analysis was to quantify and compare high and very high intensity acceleration vs. deceleration demands occurring during competitive match play in elite team sport contexts. Methods A systematic review of four electronic databases (CINAHL, MEDLINE, SPORTDiscus, Web of Science) was conducted to identify peer-reviewed articles published between January 2010 and April 2018 that had reported higher intensity (> 2.5 m·s−2) accelerations and decelerations concurrently in elite team sports competitive match play. A Boolean search phrase was developed using key words synonymous to team sports (population), acceleration and deceleration (comparators) and match play (outcome). Articles only eligible for meta-analysis were those that reported either or both high (> 2.5 m·s−2) and very high (> 3.5 m·s−2) intensity accelerations and decelerations concurrently using global positioning system devices (sampling rate: ≥ 5 Hz) during elite able-bodied (mean age: ≥ 18 years) team sports competitive match play (match time: ≥ 75%). Separate inverse random-effects meta-analyses were conducted to compare: (1) standardised mean differences (SMDs) in the frequency of high and very high intensity accelerations and decelerations occurring during match play, and (2) SMDs of temporal changes in high and very high intensity accelerations and decelerations across first and second half periods of match play. Using recent guidelines recommended for the collection, processing and reporting of global positioning system data, a checklist was produced to help inform a judgement about the methodological limitations (risk of detection bias) aligned to ‘data collection’, ‘data processing’ and ‘normative profile’ for each eligible study. For each study, each outcome was rated as either ‘low’, ‘unclear’ or ‘high’ risk of bias. Results A total of 19 studies met the eligibility criteria, comprising seven team sports including American Football (n = 1), Australian Football (n = 2), hockey (n = 1), rugby league (n = 4), rugby sevens (n = 3), rugby union (n = 2) and soccer (n = 6) with a total of 469 male participants (mean age: 18–29 years). Analysis showed only American Football reported a greater frequency of high (SMD = 1.26; 95% confidence interval [CI] 1.06–1.43) and very high (SMD = 0.19; 95% CI − 0.42 to 0.80) intensity accelerations compared to decelerations. All other sports had a greater frequency of high and very high intensity decelerations compared to accelerations, with soccer demonstrating the greatest difference for both the high (SMD = − 1.74; 95% CI − 1.28 to − 2.21) and very high (SMD = − 3.19; 95% CI − 2.05 to − 4.33) intensity categories. When examining the temporal changes from the first to the second half periods of match play, there was a small decrease in both the frequency of high and very high intensity accelerations (SMD = 0.50 and 0.49, respectively) and decelerations (SMD = 0.42 and 0.46, respectively). The greatest risk of bias (40% ‘high’ risk of bias) observed across studies was in the ‘data collection’ procedures. The lowest risk of bias (35% ‘low’ risk of bias) was found in the development of a ‘normative profile’. Conclusions To ensure that elite players are optimally prepared for the high-intensity accelerations and decelerations imposed during competitive match play, it is imperative that players are exposed to comparable demands under controlled training conditions. The results of this meta-analysis, accordingly, can inform practical training designs. Finally, guidelines and recommendations for conducting future research, using global positioning system devices, are suggested.

2015 ◽  
Vol 47 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Javier Mallo ◽  
Esteban Mena ◽  
Fabio Nevado ◽  
Víctor Paredes

AbstractThe aim of this study was to examine the physical demands imposed on professional soccer players during 11-a-side friendly matches in relation to their playing position, using global positioning system (GPS) technology. One hundred and eleven match performances of a Spanish “La Liga” team during the 2010-11 and 2011-12 pre-seasons were selected for analysis. The activities of the players were monitored using GPS technology with a sampling frequency of 1 Hz. Total distance covered, distance in different speed categories, accelerations, and heart rate responses were analyzed in relation to five different playing positions: central defenders (n=23), full-backs (n=20), central midfielders (n=22), wide midfielders (n=26), and forwards (n=20). Distance covered during a match averaged 10.8 km, with wide and central midfielders covering the greatest total distance. Specifically, wide midfielders covered the greatest distances by very high-intensity running (>19.8 km·h-1) and central midfielders by jogging and running (7.2-19.7 km·h-1). On the other hand, central defenders covered the least total distance and at high intensity, although carried out more (p<0.05-0.01) accelerations than forwards, wide midfielders, and fullbacks. The work rate profile of the players obtained with the GPS was very similar to that obtained with semi-automatic image technologies. However, when comparing results from this study with data available in the literature, important differences were detected in the amount of distance covered by sprinting, which suggests that caution should be taken when comparing data obtained with the GPS with other motion analysis systems, especially regarding high-intensity activities.


2015 ◽  
Vol 10 (6) ◽  
pp. 711-717 ◽  
Author(s):  
Georgia M. Black ◽  
Tim J. Gabbett

Purpose:No study has investigated the frequency and nature of repeated high-intensity-effort (RHIE) bouts across elite and semielite rugby league competitions. This study examined RHIE activity in rugby league match play across playing standards.Participants:36 elite and 64 semielite rugby league players.Methods:Global positioning system analysis was completed during 17 elite and 14 semielite matches.Results:The most commonly occurring RHIE bouts involved 2 efforts (2-RHIE) for both elite and semielite players. Only small differences were found in 2-RHIE activity between elite and semielite match play (effect size [ES] ≥0.31 ± 0.15, ≥88%, likely). RHIE bouts were more likely to involve contact as the number of efforts in a bout increased (ES ≥0.40 ± 0.15, 100%, almost certainly). Semielite players performed a greater proportion of 2-contact-effort RHIE bouts than their elite counterparts (68.2% vs 60.6%, ES 0.33 ± 0.15, 92%, likely), while elite players performed a greater proportion of 3-effort bouts (26.9% vs 21.1%, ES 0.31 ± 0.15, 88%, likely). Elite players also had a shorter recovery (1.00−3.99 vs ≥4.00 min) between RHIE bouts (ES ≥1.60 ± 0.71, ≥94%, likely).Conclusion:These findings highlight the RHIE demands of elite and semielite rugby league match play. Elite players are more likely to perform RHIE bouts consisting of 3 efforts and to have a shorter recovery time between bouts. Exposing players to these RHIE demands in training is likely to improve their ability to tolerate the most demanding passages of match play.


Author(s):  
David Rhodes ◽  
Stephen Valassakis ◽  
Lukasz Bortnik ◽  
Richard Eaves ◽  
Damian Harper ◽  
...  

Objectives: Previous research has highlighted the frequency of high-intensity accelerations and decelerations in elite football. The influence of these actions on match performance outcomes has not been established. The aim of the present study was to identify the influence of high-intensity accelerations and decelerations on match performance outcomes (i.e., win, draw, lost). Comparisons were also made between team and positional high-intensity accelerations and decelerations recorded within the games. Methods: 26 elite outfield footballers from an elite English Football League (EFL) Two team completed the present study. Global Positioning System (GPS) technology was utilised to quantify high-intensity accelerations and decelerations during 45 games in a competitive season. Magnitude analysis and the effects of results, positions and fixture periods were observed. Results: Significant effects of results, periods and positions were observed (p ≤ 0.05), with the highest outputs observed in games won. Positionally, fullbacks and centre forwards in a 4–3–3 formation exhibited the greatest frequency of high-intensity accelerations and decelerations. Very large differences were observed between the frequency of high-intensity decelerations compared to accelerations in games won (g = 2.37), drawn (g = 2.99) and lost (g = 3.59). The highest team frequencies of high-intensity accelerations (n = 3330) and decelerations (n = 6482) were completed in games won. Conclusions: The frequency of high-intensity accelerations and decelerations has a significant impact on match performance outcomes in an elite English League Two football team. Consideration needs to be given to specific conditioning and recovery strategies to optimise high-intensity acceleration and deceleration performance in games. Caution should be taken as these findings are representative of one team within the EFL.


2019 ◽  
Vol 40 (05) ◽  
pp. 331-335
Author(s):  
Timothy Newans ◽  
Phillip Bellinger ◽  
Karl Dodd ◽  
Clare Minahan

AbstractThe ability to change velocity rapidly is a key element of field-based sports. This study quantified the acceleration and deceleration profiles of soccer players during match play. Global positioning system measures were collected from 20 male soccer players competing in the Australian Hyundai A-League during 58 matches. Match data were organized into ten 9 min periods (i. e., P1: 0–9 min) and the time spent at moderate (1–2 m·s−2) and high (>2 m·s−2) acceleration and deceleration thresholds were quantified. Additionally, a novel deceleration: acceleration ratio was quantified to identify the transient nature of deceleration activity. Linear mixed models were used to model the acceleration and deceleration profiles. All acceleration and deceleration metrics displayed negative logarithmic curves within each half. There was no change in the ratio of high deceleration: acceleration; however, a significant increase in the ratio of moderate deceleration:acceleration was evident. Using negative logarithmic curves to illustrate the acceleration and deceleration decay provides a novel methodological approach to quantify the high-intensity actions during match play. A decrease in the time spent decelerating throughout a match may be attributed to a lack of opportunity. Practitioners can use the coefficients, intercepts, and deceleration: acceleration ratios to monitor a player’s deceleration profile in match play.


2016 ◽  
Vol 11 (4) ◽  
pp. 530-534 ◽  
Author(s):  
Tim J. Gabbett ◽  
Caleb W. Gahan

Purpose:To examine the nature and frequency of rugby league repeated high-intensity-effort (RHIE) activity in relation to tries scored and conceded in successful and unsuccessful teams.Participants:185 semiprofessional rugby league players (mean ± SD age 23.7 ± 3.2 y) from 11 teams.Methods:Global positioning system (GPS) data were collected during 21 matches and analyzed for the total number of RHIE bouts, efforts per bout, duration of efforts, and recovery between efforts. Using notational analysis, a RHIE-bout frequency distribution, representing 0–60 s, 61–120 s, 121–180 s, 181–240 s, and 241–300 s before scoring and conceding a try, was established.Results:Over 50% of RHIE bouts occurred within 5 min of a try. Bottom-4 teams performed a greater proportion of bouts within 5 min of a try than top-4 teams (61.5% vs 48.2%, effect size, ES = 0.69 ± 0.28, P = .0001). Top-4 teams performed a greater number of RHIE bouts per conceded try (3.0 ± 2.1 vs 1.6 ± 0.7, ES = 0.74 ± 0.51, P < .05), while bottom-4 teams performed a greater number of RHIE bouts per try scored (3.6 ± 2.5 vs 2.1 ± 1.7, ES = 0.70 ± 0.71, P = .10).Conclusion:The majority of rugby league RHIE bouts occur at critical periods during match play. Successful rugby league teams perform more RHIE bouts before conceding tries, while unsuccessful teams perform more bouts before scoring tries. These findings demonstrate that unsuccessful teams are required to work harder to score tries while successful teams work harder to prevent tries.


Author(s):  
Charly Fornasier-Santos ◽  
Gregoire P Millet ◽  
Paul Stridgeon ◽  
Olivier Girard ◽  
Franck Brocherie ◽  
...  

AbstractThe purpose of this study is to evaluate the influence of competition level on running patterns for five playing position in the most successful 2014–2015 European rugby union team. Seventeen French rugby union championship and seven European rugby Champions Cup games were analysed. Global positioning system (sampling: 10 Hz) were used to determine high-speed movements, high-intensity accelerations, repeated high-intensity efforts and high-intensity micro-movements characteristics for five positional groups. During European Champions Cup games, front row forwards performed a higher number of repeated high-intensity efforts compared to National championship games (5.8±1.6 vs. 3.6±2.3; +61.1%), and back row forwards travelled greater distance both at high-speed movements (3.4±1.8 vs. 2.4±0.9 m·min-1; +41.7%) and after high-intensity accelerations (78.2±14.0 vs. 68.1 ±13.4 m; +14.8%). In backs, scrum halves carried out more high-intensity accelerations (24.7±3.1 vs. 14.8±5.0; +66.3%) whereas outside backs completed a higher number of high-speed movements (62.7±25.4 vs. 48.3±17.0; +29.8%) and repeated high-intensity efforts (13.5±4.6 vs. 9.7±4.9;  +39.2%). These results highlighted that the competition level affected the high-intensity activity differently among the five playing positions. Consequently, training programs in elite rugby should be tailored taking into account both the level of competition and the high-intensity running pattern of each playing position.


2019 ◽  
Vol 31 (1) ◽  
pp. 85-90
Author(s):  
Heita Goto ◽  
James A. King

Purpose: The purposes of the present study were to examine high-intensity running distance during 6-a-side small-sided games (SSGs) and 11-a-side matches (11M) in youth soccer players using speed and metabolic power approaches and the magnitude of difference between the high-intensity running distance calculated with the 2 approaches. Method: A total of 11 outfield players (age = 16.3 [0.6] y) performed SSGs with 3 pitch sizes (small SSG [SSGS], medium SSG, and large SSG [SSGL]) and 11M. A Global Positioning System (15 Hz) was employed to calculate total distance covered, distance covered at a speed ≥4.3 m·s−1 (TS), and metabolic power of ≥20 W·kg−1 (TP). Results: The total distance covered increased from SSGS through to SSGL (P < .001) and was greater during 11M and SSGL compared with other SSGs (P < .01). TS and TP increased from SSGS (TS vs TP = 98 [55] vs 547 [181] m) through to SSGL (538 [167] vs 1050 [234] m; P < .001). TS and TP during 11M (370 [122] vs 869 [233] m) was greater than SSGS (P < .001 for both) and less than SSGL (P < .05 for both). The magnitude of difference between TS and TP (as a percentage) was lower with an increase in pitch size during SSGs and was greater in SSGS (615% [404%]; P < .001), medium SSG (195% [76%]; P < .05), and smaller in SSGL (102% [33%]; P < .01) compared with 11M (145% [53%]). Conclusion: SSGs can replicate the high-intensity demands of 11M and the speed approach underestimates the high-intensity demands of SSGs and 11M compared with the metabolic power approach.


Author(s):  
Markel Rico-González ◽  
José Pino-Ortega ◽  
Fabio Y Nakamura ◽  
Felipe Arruda Moura ◽  
Daniel Rojas-Valverde ◽  
...  

The main aim of this work was to review the use of technological tracking methods to assess collective spatial-positioning variables in team sports. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and PICO design for systematic reviews, study identification was performed in four databases (PubMed, SPORTDiscus, ProQuest Central, and Web of Science). Articles were selected if they focused on player position and technological tracking methods. After duplicate removal, 2194 articles were identified based on the established search criteria, of which 72 articles were selected and analysed. Semi-automatic optic-based systems, Global Positioning System/Global Navigation Satellite Systems, and local positioning systems were used in 60%, 33% and 7% of the studies, respectively. All studies that measured tactical variables by local positioning system technology in team sports used local position measurement technology. Optic-based systems were used more often in the early years to analyse collective tactical behaviour during competition. Later, Global Positioning System/Global Navigation Satellite Systems became more frequent to measure behaviour in team sports during the training process. The possibility of using the same system during competition and training will facilitate the assessment of collective tactical behaviour in team sports.


Sports ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 139
Author(s):  
Toni Modric ◽  
Mario Jelicic ◽  
Damir Sekulic

Previous studies examined training/match ratios (TMr) to determine the training load relative to the match load, but the influence of the relative training load (RTL) on success in soccer is still unknown. Therefore, this study aimed to investigate the possible influence of RTL on final match outcome in soccer (win, draw, and loss). Running performances (RP) of soccer players (n = 21) in the Croatian highest national soccer competition were analyzed during the season 2020–2021. Data were measured by the global positioning system in 14 official matches and 67 training sessions. RTL was assessed by TMr, which were calculated as the ratio of RP during training and match in the same week, evaluating the following measures: TDr (total distance ratio), LIDr (low-intensity distance ratio), RDr (running distance ratio), HIDr (high-intensity distance ratio), ACCr (total accelerations ratio), DECr (total decelerations ratio), HI-ACCr (high-intensity accelerations ratio), HI-DECr (high-intensity decelerations ratio). All TMr were examined separately for each training session within in-season microcycles (categorized as days before the match day, i.e., MD minus). Spearman correlations were used to identify association between match outcome and TMr. The results indicated negative associations between match outcome and TDr, LIDr, ACCr and DECr on MD-1 and MD-2). In contrast, positive associations were evidenced between match outcome, and HIDr on MD-3 and TDr, LIDr, ACCr and DECr on MD-5 (p < 0.05; all moderate correlations). These findings demonstrate that final match outcome in soccer was associated with greater RTL of (i) high-intensity running three days before the match, (ii) total and low-intensity running, accelerations and decelerations five days before the match, and (iii) lower RTL of total and low-intensity running, accelerations and decelerations one and two days before the match.


Sign in / Sign up

Export Citation Format

Share Document