scholarly journals Fractional differential equations and Volterra–Stieltjes integral equations of the second kind

Author(s):  
Avyt Asanov ◽  
Ricardo Almeida ◽  
Agnieszka B. Malinowska

Abstract In this paper, we construct a method to find approximate solutions to fractional differential equations involving fractional derivatives with respect to another function. The method is based on an equivalence relation between the fractional differential equation and the Volterra–Stieltjes integral equation of the second kind. The generalized midpoint rule is applied to solve numerically the integral equation and an estimation for the error is given. Results of numerical experiments demonstrate that satisfactory and reliable results could be obtained by the proposed method.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Adem Kılıçman ◽  
Wasan Ajeel Ahmood

The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.


2015 ◽  
Vol 4 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Ozkan Guner ◽  
Ahmet Bekir ◽  
Halis Bilgil

AbstractIn this article, the fractional derivatives in the sense of modified Riemann–Liouville and the exp-function method are used to construct exact solutions for some nonlinear partial fractional differential equations via the nonlinear fractional Liouville equation and nonlinear fractional Zoomeron equation. These nonlinear fractional equations can be turned into another nonlinear ordinary differential equation by complex transform method. This method is efficient and powerful in solving wide classes of nonlinear fractional order equations. The exp-function method appears to be easier and more convenient by means of a symbolic computation system.


Author(s):  
Changpin Li ◽  
Li Ma

Generally speaking, definite conditions of fractional differential equations with Riemann-Liouville, Riesz or Hadamard fractional derivatives are quite different from those of classic differential equations. In this paper, we propose the well-posed conditions for fractional differential equation involving right Riemann-Liouville, Riesz and Hadamard fractional derivatives.


Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .


2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


Author(s):  
Mohamed Houas ◽  
Mohamed Bezziou

In this paper, we discuss the existence, uniqueness and stability of solutions for a nonlocal boundary value problem of nonlinear fractional differential equations with two Caputo fractional derivatives. By applying the contraction mapping and O’Regan fixed point theorem, the existence results are obtained. We also derive the Ulam-Hyers stability of solutions. Finally, some examples are given to illustrate our results.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Sign in / Sign up

Export Citation Format

Share Document