scholarly journals Interval maximum likelihood inversion for well logging data and statistical properties of estimated parameters

Author(s):  
László Balázs

AbstractDuring the conventional petrophysical interpretation fixed (predefined) zone parameters are applied for every interpretation zone (depth intervals). Their inclusion in the inversion process requires the extension of a likelihood function for the whole zone. This allows to define the extremum problem for fitting the parameter set to the full interval petrophysical model of the layers crossed by the well, both for the parameters associated with the depth points (e.g. porosity, saturations, rock matrix composition etc.) and for the zone parameters (e.g. formation water resistivity, cementation factor etc.). In this picture the parameters form a complex coupled and correlated system. Even the local parameters associated with different depths are coupled through the zone parameter change. In this paper, the statistical properties of the coupled parameter system are studied which fitted by the Interval Maximum Likelihood (ILM) method. The estimated values of the parameters are coupled through the likelihood function and this determines the correlation between them.

2014 ◽  
Vol 513-517 ◽  
pp. 1227-1232
Author(s):  
Zhi Cheng Zhang ◽  
Xiao Hui Yu ◽  
Yao Wu Shi

In this paper, the Maximum Likelihood (ML) method using Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is applied to the problem of estimating the direction-of-arrival (DOA) and the Doppler frequency of multiple signal sources impinging on an antenna array simultaneously. The extended observability matrix containing the angle and frequency parameters is established using state-space model. The ML method is used to estimate the parameters accurately and convert the problem from parameter estimation to a nonlinear multidimensional function optimization. Then the DOA and Doppler frequency are estimated by optimizing the likelihood function using QPSO algorithm. The proposed method reserves the asymptotic unbiased estimation of the ML method and reduces the computational burden of calculating the solution. Besides, the estimated parameters can be paired automatically.


Author(s):  
Roman Flury ◽  
Reinhard Furrer

AbstractWe discuss the experiences and results of the AppStatUZH team’s participation in the comprehensive and unbiased comparison of different spatial approximations conducted in the Competition for Spatial Statistics for Large Datasets. In each of the different sub-competitions, we estimated parameters of the covariance model based on a likelihood function and predicted missing observations with simple kriging. We approximated the covariance model either with covariance tapering or a compactly supported Wendland covariance function.


Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


2012 ◽  
Vol 2 (1) ◽  
pp. 7 ◽  
Author(s):  
Andrzej Kijko

This work is focused on the Bayesian procedure for the estimation of the regional maximum possible earthquake magnitude <em>m</em><sub>max</sub>. The paper briefly discusses the currently used Bayesian procedure for m<sub>max</sub>, as developed by Cornell, and a statistically justifiable alternative approach is suggested. The fundamental problem in the application of the current Bayesian formalism for <em>m</em><sub>max</sub> estimation is that one of the components of the posterior distribution is the sample likelihood function, for which the range of observations (earthquake magnitudes) depends on the unknown parameter <em>m</em><sub>max</sub>. This dependence violates the property of regularity of the maximum likelihood function. The resulting likelihood function, therefore, reaches its maximum at the maximum observed earthquake magnitude <em>m</em><sup>obs</sup><sub>max</sub> and not at the required maximum <em>possible</em> magnitude <em>m</em><sub>max</sub>. Since the sample likelihood function is a key component of the posterior distribution, the posterior estimate of <em>m^</em><sub>max</sub> is biased. The degree of the bias and its sign depend on the applied Bayesian estimator, the quantity of information provided by the prior distribution, and the sample likelihood function. It has been shown that if the maximum posterior estimate is used, the bias is negative and the resulting underestimation of <em>m</em><sub>max</sub> can be as big as 0.5 units of magnitude. This study explores only the maximum posterior estimate of <em>m</em><sub>max</sub>, which is conceptionally close to the classic maximum likelihood estimation. However, conclusions regarding the shortfall of the current Bayesian procedure are applicable to all Bayesian estimators, <em>e.g.</em> posterior mean and posterior median. A simple, <em>ad hoc</em> solution of this non-regular maximum likelihood problem is also presented.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sandeep Kumar Maurya ◽  
Sanjay K Singh ◽  
Umesh Singh

A one parameter right skewed, upside down bathtub type, heavy-tailed distribution is derived. Various statistical properties and maximum likelihood approaches for estimation purpose are studied. Five different real data sets with four different models are considered to illustrate the suitability of the proposed model.


1996 ◽  
Vol 33 (04) ◽  
pp. 1061-1076 ◽  
Author(s):  
P. E. Kloeden ◽  
E. Platen ◽  
H. Schurz ◽  
M. Sørensen

In this paper statistical properties of estimators of drift parameters for diffusion processes are studied by modern numerical methods for stochastic differential equations. This is a particularly useful method for discrete time samples, where estimators can be constructed by making discrete time approximations to the stochastic integrals appearing in the maximum likelihood estimators for continuously observed diffusions. A review is given of the necessary theory for parameter estimation for diffusion processes and for simulation of diffusion processes. Three examples are studied.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
M. Angeles Carnero ◽  
Ana Pérez

Abstract This paper illustrates how outliers can affect both the estimation and testing of leverage effect by focusing on the TGARCH model. Three estimation methods are compared through Monte Carlo experiments: Gaussian Quasi-Maximum Likelihood, Quasi-Maximum Likelihood based on the Student-t likelihood and Least Absolute Deviation method. The empirical behavior of the t-ratio and the Likelihood Ratio tests for the significance of the leverage parameter is also analyzed. Our results put forward the unreliability of Gaussian Quasi-Maximum Likelihood methods in the presence of outliers. In particular, we show that one isolated outlier could hide true leverage effect whereas two consecutive outliers bias the estimated leverage coefficient in a direction that crucially depends on the sign of the first outlier and could lead to wrongly reject the null of no leverage effect or to estimate asymmetries of the wrong sign. By contrast, we highlight the good performance of the robust estimators in the presence of one isolated outlier. However, when there are patches of outliers, our findings suggest that the sizes and powers of the tests as well as the estimated parameters based on robust methods may still be distorted in some cases. We illustrate these results with two series of daily returns.


2020 ◽  
pp. 2150018
Author(s):  
Zhifen Chen ◽  
Xiaopeng Chen

In this paper, we consider the maximum likelihood estimation for the symmetric [Formula: see text]-stable Ornstein–Uhlenbeck (S[Formula: see text]S-OU) processes based on discrete observations. Since the closed-form expression of maximum likelihood function is hard to obtain in the Lévy case, we choose a mixture of Cauchy and Gaussian distribution to approximate the probability density function (PDF) of the S[Formula: see text]S distribution. By means of transition function and Laplace transform, we construct an explicit approximate sequence of likelihood function, which converges to the likelihood function of S[Formula: see text]S distribution. Based on the approximation of likelihood function we give an algorithm for computing maximum likelihood estimation. We also numerically simulate some experiments which demonstrate the accuracy and stability of the proposed estimator.


Sign in / Sign up

Export Citation Format

Share Document