Analysis of characteristics and mechanism of flow unsteadiness in a transonic compressor

Author(s):  
Guangyao An ◽  
Yanhui Wu ◽  
Jinhua Lang ◽  
Zhiyang Chen
Author(s):  
Guangyao An ◽  
Yanhui Wu ◽  
Jinhua Lang ◽  
Zhiyang Chen ◽  
Bo Wang ◽  
...  

It is well known that tip flow unsteadiness has profound effects on both performance and stability of axial compressors. A number of numerical simulations have been performed in transonic compressors to uncover the nature of tip flow unsteadiness. From this research, tip flow unsteadiness can be attributed to many factors, such as the movement of the primary and secondary leakage flow, the interaction between shock and vortex, and the tip leakage vortex breakdown. However, no final conclusion has yet been reached on this matter. The current investigation is carried out to explore the origin of tip flow unsteadiness from the perspective of the evolution and development of tip leakage vortex breakdown. In this paper, unsteady RANS simulations have been performed to investigate the fluid dynamic processes in a tip-critical transonic compressor, NASA Rotor 35. A vortex core visualization method based on an eigenvector method is introduced as an important tool to identify the vortex arising from tip leakage flow. As the flow rate varies, three critical operating points with distinctive features of flow unsteadiness are observed. At the first critical operating point, bubble-type breakdown occurs, and gives rise to a weak unsteadiness with high frequency in the rotor passage due to the oscillation of the recirculation region induced by the tip leakage vortex breakdown. At the second critical operating point, the vortex breakdown has transformed from bubble-type to spiral-type, which leads to the frequency of the pressure oscillation reduced almost by half and the amplitude increased significantly. At the third critical operating point, a new vortex that is perpendicular to the pressure surface comes into being in the tip region, which leads to a prominent pressure oscillation of the tip flow and another jump in amplitude. As a result, the evolution and development of tip leakage vortex breakdown are closely related to the tip flow unsteadiness of the investigated rotor.


2002 ◽  
Author(s):  
William W. Copenhaver
Keyword(s):  

2021 ◽  
Vol 11 (11) ◽  
pp. 4845
Author(s):  
Mohammad Hossein Noorsalehi ◽  
Mahdi Nili-Ahmadabadi ◽  
Seyed Hossein Nasrazadani ◽  
Kyung Chun Kim

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Istvan Szabo ◽  
Mark G. Turner

Defining the thermodynamic efficiency of the wet compression process in a compressor is not trivial, since the flow in this case has multiple phases present which interact with each other. In this paper, an approach is presented that calculates the overall entropy creation and thus the isentropic efficiency of a wet compression process in a transonic compressor rotor. The viscous dissipation function is calculated everywhere in the domain in the post-processing phase of the CFD simulation and integrated to the wall, with special treatment in the near-wall regions where high rates of entropy generation occur. The isentropic efficiency of the wet compression is then determined from the entropy generation rate. Analytical integration of wall functions and numerical integration of the viscous dissipation function allows for reasonable results even with relatively coarse grids and can be applied for single-phase flows. The methodology presented is also useful to quantify the efficiency of thermodynamic processes in devices that introduce streams into the flow path, such as cooled turbines and compressors with flow control.


Author(s):  
A. J. Gannon ◽  
G. V. Hobson ◽  
R. P. Shreeve ◽  
I. J. Villescas

High-speed pressure measurements of a transonic compressor rotor-stator stage and rotor-only configuration during stall and surge are presented. Rotational speed data showed the difference between the rotor-only case and rotor-stator stage. The rotor-only case stalled and remained stalled until the control throttle was opened. In the rotor-stator stage the compressor surged entering a cyclical stalling and then un-stalling pattern. An array of pressure probes was mounted in the case wall over the rotor for both configurations of the machine. The fast response probes were sampled at 196 608 Hz as the rotor was driven into stall. Inspection of the raw data signal allowed the size and speed of the stall cell during its growth to be investigated. Post-processing of the simultaneous signals of the casing pressure showed the development of the stall cell from the point of inception and allowed the structure of the stall cell to be viewed.


2001 ◽  
Author(s):  
Tongqing Wang ◽  
Huaiyu Wu ◽  
Yin Liu

2020 ◽  
Vol 37 (3) ◽  
pp. 259-265
Author(s):  
Kang Da ◽  
Wang Yongliang ◽  
Zhong Jingjun ◽  
Liu Zihao

AbstractThe blade deformation caused by aerodynamic and centrifugal loads during operating makes blade configurations different from their stationary shape. Based on the load incremental approach, a novel pre-deformation method for cold blade shape is provided in order to compensate blade deformation under running. Effect of nonlinear blade stiffness is considered by updating stiffness matrix in response to the variation of blade configuration when calculating deformations. The pre-deformation procedure is iterated till a converged cold blade shape is obtained. The proposed pre-deformation method is applied to a transonic compressor rotor. Effect of load conditions on blade pre-deformation is also analyzed. The results show that the pre-deformation method is easy to implement with fast convergence speed. Neither the aerodynamic load nor centrifugal load can be neglected in blade pre-deformation.


Sign in / Sign up

Export Citation Format

Share Document