Experimental research on the critical conditions and critical equation of chip splitting when turning a C45E4 disc workpiece symmetrically with a high-speed steel double-edged turning tool

Author(s):  
Ming-Xian Xu ◽  
Liang-Shan Xiong ◽  
Bao-Yi Zhu ◽  
Ling-Feng Zheng ◽  
Kai Yin
2010 ◽  
Vol 33 ◽  
pp. 528-532
Author(s):  
Y.L. Tang ◽  
Rong Di Han ◽  
Lin Geng

The mechanical model of the tapping torque and the friction one were established based on Theoretical Research of Tapping Forces. A series of standard taps with a cutting cone angle of 7°30′ were prepared from high-speed steel W9 and used to tap Nickel-based superalloy GH4169.It was found that the friction torque was about 45% of the total torque as tapping with the standard taps. Friction torque is the main reason in tapping difficult –to-cut materials.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1226-1235
Author(s):  
Safa R. Fadhil ◽  
Shukry. H. Aghdeab

Electrical Discharge Machining (EDM) is extensively used to manufacture different conductive materials, including difficult to machine materials with intricate profiles. Powder Mixed Electro-Discharge Machining (PMEDM) is a modern innovation in promoting the capabilities of conventional EDM. In this process, suitable materials in fine powder form are mixed in the dielectric fluid. An equal percentage of graphite and silicon carbide powders have been mixed together with the transformer oil and used as the dielectric media in this work. The aim of this study is to investigate the effect of some process parameters such as peak current, pulse-on time, and powder concentration of machining High-speed steel (HSS)/(M2) on the material removal rate (MRR), tool wear rate (TWR) and the surface roughness (Ra). Experiments have been designed and analyzed using Response Surface Methodology (RSM) approach by adopting a face-centered central composite design (FCCD). It is found that added graphite-silicon carbide mixing powder to the dielectric fluid enhanced the MRR and Ra as well as reduced the TWR at various conditions. Maximum MRR was (0.492 g/min) obtained at a peak current of (24 A), pulse on (100 µs), and powder concentration (10 g/l), minimum TWR was (0.00126 g/min) at (10 A, 100 µs, and 10 g/l), and better Ra was (3.51 µm) at (10 A, 50 µs, and 10 g/l).


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract Mustang-LC is a tungsten-molybdenum high-speed steel specially developed for hot work applications requiring long die life. It is recommended for hot forming and swaging dies, hot extrusion dies, hot punches, etc. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-192. Producer or source: Jessop Steel Company.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS T12001 is a general-purpose, tungsten, high-speed steel containing nominally 18% tungsten, 4% chromium and 1% vanadium. It is suitable for practically all high-speed applications. This steel has been the standard of the industry for many years because of its cutting ability, ease of heat treatment and minimum tendency to decarburize. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-495. Producer or source: Tool steel mills.


Alloy Digest ◽  
1988 ◽  
Vol 37 (5) ◽  

Abstract UNS No. T11310 is the high vanadium type of molybdenum high-speed steel. It is a deep-hardening steel and offers high cutting ability and excellent finishing properties. It is a general-purpose steel for cutting tools and is used in such applications as taps, lathe tools and reamers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and machining. Filing Code: TS-490. Producer or source: Tool steel mills.


Alloy Digest ◽  
1987 ◽  
Vol 36 (10) ◽  

Abstract AISI Type M7 is a molybdenum type of high-speed steel. It is somewhat similar to AISI Type M1 tool steel but with higher percentages of carbon and vanadium to provide an improvement over AISI Type M1 in cutting characteristics without a significant loss in toughness. It is suitable for a wide variety of cutting-tool applications where improved resistance to abrasion is required. The many uses of Type M7 include twist drills, end mills, shear blades, punches, milling cutters, lathe tools, taps and reamers. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: TS-483. Producer or source: Tool steel mills. See also Alloy Digest TS-468, January 1987.


Alloy Digest ◽  
2002 ◽  
Vol 51 (5) ◽  

Abstract NIROSTA 4305 is an austenitic alloy with a high sulfur content. The alloy is typically used for machined parts. As with other austenitic steels, it is necessary to machine with good-quality high-speed steel or tungsten carbide tools. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-854. Producer or source: ThyssenKrupp Nirosta GmbH.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Sign in / Sign up

Export Citation Format

Share Document