OsWNK9 mitigates salt and drought stress effects through induced antioxidant systems in Arabidopsis

2019 ◽  
Vol 24 (2) ◽  
pp. 168-181 ◽  
Author(s):  
Rakesh Manuka ◽  
Suhas Balasaheb Karle ◽  
Kundan Kumar
Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1826 ◽  
Author(s):  
Jiahao Li ◽  
Yiqing Yang ◽  
Kang Sun ◽  
Yi Chen ◽  
Xuan Chen ◽  
...  

Melatonin is a biological hormone that plays crucial roles in stress tolerance. In this study, we investigated the effect of exogenous melatonin on abiotic stress in the tea plant. Under cold, salt and drought stress, increasing malondialdehyde levels and decreasing maximum photochemical efficiency of PSII were observed in tea leaves. Meanwhile, the levels of reactive oxygen species (ROS) increased significantly under abiotic stress. Interestingly, pretreatment with melatonin on leaves alleviated ROS burst, decreased malondialdehyde levels and maintain high photosynthetic efficiency. Moreover, 100 μM melatonin-pretreated tea plants showed high levels of glutathione and ascorbic acid and increased the activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase under abiotic stress. Notably, melatonin treatments can positively up-regulate the genes (CsSOD, CsPOD, CsCAT and CsAPX) expression of antioxidant enzyme biosynthesis. Taken together, our results confirmed that melatonin protects tea plants against abiotic stress-induced damages through detoxifying ROS and regulating antioxidant systems.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 632
Author(s):  
Aihua Wang ◽  
Chao Ma ◽  
Hongye Ma ◽  
Zhilang Qiu ◽  
Xiaopeng Wen

Pitaya (Hylocereus polyrhizus L.) is highly tolerant to drought stress. Elucidating the response mechanism of pitaya to drought will substantially contribute to improving crop drought tolerance. In the present study, the physiological and proteomic responses of the pitaya cultivar ‘Zihonglong’ were compared between control seedlings and seedlings exposed to drought stress (−4.9 MPa) induced by polyethylene glycol for 7 days. Drought stress obviously enhanced osmolyte accumulation, lipid peroxidation, and antioxidant enzyme activities. Proteomic data revealed drought stress activated several pathways in pitaya, including carbohydrate and energy metabolism at two drought stress treatment time-points (6 h and 3 days). Other metabolic pathways, including those related to aspartate, glutamate, glutathione, and secondary metabolites, were induced more at 3 days than at 6 h, whereas photosynthesis and arginine metabolism were induced exclusively at 6 h. Overall, protein expression changes were consistent with the physiological responses, although there were some differences in the timing. The increases in soluble sugar contents mainly resulted from the degradation and transformation of insoluble carbohydrates. Differentially accumulated proteins in amino acid metabolism may be important for the conversion and accumulation of amino acids. GSH and AsA metabolism and secondary metabolism may play important roles in pitaya as enzymatic and nonenzymatic antioxidant systems. The enhanced carbohydrate and energy metabolism may provide the energy necessary for initiating the above metabolic pathways. The current study provided the first proteome profile of this species exposed to drought stress, and may clarify the mechanisms underlying the considerable tolerance of pitaya to drought stress.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Haddad A. El Rabey ◽  
Abdulrahman L. Al-Malki ◽  
Khalid O. Abulnaja ◽  
Wolfgang Rohde

This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar “Sagie” were subjected to drought (27.5 g/L polyethylene glycol 6000) and salinity stress conditions (16 g/L NaCl) for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress.


2016 ◽  
Vol 47 (6) ◽  
pp. 743-752 ◽  
Author(s):  
R. Keshavarz Afshar ◽  
M. Hashemi ◽  
M. DaCosta ◽  
J. Spargo ◽  
A. Sadeghpour

Sign in / Sign up

Export Citation Format

Share Document