scholarly journals Exogenous Melatonin Enhances Cold, Salt and Drought Stress Tolerance by Improving Antioxidant Defense in Tea Plant (Camellia sinensis (L.) O. Kuntze)

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1826 ◽  
Author(s):  
Jiahao Li ◽  
Yiqing Yang ◽  
Kang Sun ◽  
Yi Chen ◽  
Xuan Chen ◽  
...  

Melatonin is a biological hormone that plays crucial roles in stress tolerance. In this study, we investigated the effect of exogenous melatonin on abiotic stress in the tea plant. Under cold, salt and drought stress, increasing malondialdehyde levels and decreasing maximum photochemical efficiency of PSII were observed in tea leaves. Meanwhile, the levels of reactive oxygen species (ROS) increased significantly under abiotic stress. Interestingly, pretreatment with melatonin on leaves alleviated ROS burst, decreased malondialdehyde levels and maintain high photosynthetic efficiency. Moreover, 100 μM melatonin-pretreated tea plants showed high levels of glutathione and ascorbic acid and increased the activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase under abiotic stress. Notably, melatonin treatments can positively up-regulate the genes (CsSOD, CsPOD, CsCAT and CsAPX) expression of antioxidant enzyme biosynthesis. Taken together, our results confirmed that melatonin protects tea plants against abiotic stress-induced damages through detoxifying ROS and regulating antioxidant systems.

2020 ◽  
Author(s):  
PeiLong Wang ◽  
XiaoJin Lei ◽  
JiaXin Lv ◽  
caiqiu gao

Abstract Background: Trehalose is a nonreducing disaccharide with high stability and strong water absorption properties that can improve the resistance of organisms to various abiotic stresses. Trehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. Results: A full-length cDNA of ThTPS was cloned from Tamarix hispida. The phylogenetic tree among ThTPS and 11 AtTPS in Arabidopsis indicates that the ThTPS protein had a close evolutionary relationship with AtTPS7. However, the function of AtTPS7 has not been determined. To analyze the abiotic stress tolerance function of ThTPS, the expression patterns of ThTPS were monitored under salt and drought stress and JA, ABA and GA3 hormone stimulation in T. hispida by qRT-PCR. The results showed that ThTPS expression was clearly induced by these 5 kinds of treatments at at least one studied point. Particularly under salt stress, ThTPS was highly induced in the roots of T. hispda. Furthermore, the ThTPS gene was transiently overexpressed in T. hispida. The results of physiological indexes and staining showed that overexpression of the ThTPS gene increased T. hispida salt and drought stress tolerance. Conclusion: The ThTPS gene can respond to abiotic stress such as salt and drought, and overexpression of ThTPS gene can significantly improve salt and drought tolerance. These findings establish a foundation to better understand the response of TPS genes to abiotic stress in plants.


2015 ◽  
Vol 15 (2) ◽  
pp. 118-122
Author(s):  
Altanzaya Tovuu ◽  
Bolortsetseg Jigmeddorj ◽  
Tumenjargal Dagvanamdal

Stipa sibirica (L) is one of important perennial grass species which belong to genus of Stipa, and family of Poaceae. It has early growth in spring and good quality for animal productivity and good adaptability in vast range of sever conditions in all over the country. Temperature and drought stress are among the two most important environmental factors influencing crop growth, development and yield processes. This study compares three stresses which as cold, drought and saline conditions. In vitro stress assays are commonly used to study the responses of plants to abiotic stress and to assess stress tolerance. Exposure of plants to a drought stress for 10 days significantly decreased the photochemical efficiency of PSII and the Fv/Fm values were almost 50% lower (0.41±0.01) compared with the control plants (0.81±0.01).During cold stress after21 days Fv/Fm decreased to 0.40 ± 0.03. The results of this study demonstrated that Stipa sibirica (L) plants were better adapted to cold conditions than the drought conditionsJournal of agricultural sciences №15 (02): 118-122, 2015


2018 ◽  
Vol 19 (12) ◽  
pp. 3938 ◽  
Author(s):  
Chi-Hui Sun ◽  
Chin-Ying Yang ◽  
Jason Tzen

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


FEBS Open Bio ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 438-442 ◽  
Author(s):  
Myung-Hee Kim ◽  
Shunya Sato ◽  
Kentaro Sasaki ◽  
Wataru Saburi ◽  
Hirokazu Matsui ◽  
...  

2019 ◽  
pp. 417-436 ◽  
Author(s):  
Guddimalli Rajasheker ◽  
Gandra Jawahar ◽  
Naravula Jalaja ◽  
Somanaboina Anil Kumar ◽  
Palavalasa Hima Kumari ◽  
...  

2005 ◽  
Vol 139 (1) ◽  
pp. 267-274 ◽  
Author(s):  
Gabor Jakab ◽  
Jurriaan Ton ◽  
Victor Flors ◽  
Laurent Zimmerli ◽  
Jean-Pierre Métraux ◽  
...  

2020 ◽  
Author(s):  
Huan Wang ◽  
ZhaoTang Ding ◽  
Mengjie Gou ◽  
Jianhui Hu ◽  
Yu Wang ◽  
...  

Abstract Background: Autophagy, meaning ‘self-eating’, is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants.Results: In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar ‘Longjing43’ than in the cold-susceptible cultivar ‘Damianbai’ during the CA period; however, the expression of CsATG101 showed the opposite tendency.Conclusions: We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1036E-1037
Author(s):  
Mohamed Tawfik ◽  
Alejandra Ferenczi ◽  
Daniel Enter ◽  
Rebecca Grumet

Abiotic stresses (e.g., salinity, drought, cold, oxidative stress) can be major factors limiting plant productivity worldwide. We sought to increase abiotic stress resistance in cucumber by expressing the A. thaliana transcription factors CBF1and CBF3, which regulate genes responsible for enhanced dehydration-stress resistance in Arabidopsis. Our previous studies in the greenhouse and field demonstrated increased salinity tolerance in CBF-expressing cucumber lines. In the current studies, we tested response of CBF-cucumber plants to drought, chilling, and oxidative stresses. Transgenic cucumber plants subjected to drought stress in the greenhouse showed elevated levels of the stress-inducible compatible solute, proline, compared to the nontransgenic controls. Preliminary results also indicate greater photochemical efficiency in CBF-expressing plants under drought stress conditions compared to the nontransgenic controls. Under nonstressed conditions, there were no significant differences in growth between the transgenic and the nontransgenic cucumber plants; however, after a cycle of drought stress, CBF-cucumber lines had less growth reduction compared to the nontransgenic counterparts. The advantage in growth was less pronounced after a second cycle of drought. We also evaluated the transgenic cucumber plants under chilling conditions (i.e., low, nonfreezing temperatures within the 0 to 12 °C range). Based on plant height and cotyledon and leaf damage measurements, transgenic cucumber seedlings did not show chilling tolerance compared to the wild-type control. The response of transgenic CBF-cucumber plants to oxidative stress using methyl viologen is also being evaluated.


Sign in / Sign up

Export Citation Format

Share Document