scholarly journals Movement pattern of an ellipsoidal nanoparticle confined between solid surfaces: Theoretical model and molecular dynamics simulation

Friction ◽  
2020 ◽  
Author(s):  
Junqin Shi ◽  
Xiangzheng Zhu ◽  
Kun Sun ◽  
Liang Fang

Abstract The movement pattern of ellipsoidal nanoparticles confined between copper surfaces was examined using a theoretical model and molecular dynamics simulation. Initially, we developed a theoretical model of movement patterns for hard ellipsoidal nanoparticles. Subsequently, the simulation indicated that there are critical values for increasing the axial ratio, driving velocity of the contact surface, and lowering normal loads (i.e., 0.83, 15 m/s, and 100 nN under the respective conditions), which in turn change the movement pattern of nanoparticles from sliding to rolling. Based on the comparison between the ratio of arm of force (e/h) and coefficient of friction (μ) the theoretical model was in good agreement with the simulations and accurately predicted the movement pattern of ellipsoidal nanoparticles. The sliding of the ellipsoidal nanoparticles led to severe surface damage. However, rolling separated the contact surfaces and thereby reduced friction and wear.

2011 ◽  
Vol 25 (04) ◽  
pp. 543-550 ◽  
Author(s):  
XIU-FANG GONG ◽  
GONG-XIAN YANG ◽  
PENG LI ◽  
YIN WANG ◽  
XI-JING NING

We have developed a simplified molecular-dynamical model for simulating ablation of solid surfaces by laser pulses, and specifically investigated expansion of Cu cloud in vacuum vaporized on the surface, showing that the angular distributions of the plume depend on the shape of the laser spot on the surface. In particular, experimentally observed flipover effects have been obtained, and an adiabatic constant determined from our simulations via an adiabatic expansion model agrees well with previous measurements.


1993 ◽  
Vol 07 (09n10) ◽  
pp. 1779-1788 ◽  
Author(s):  
JASON A.C. GALLAS ◽  
HANS J. HERRMANN ◽  
STEFAN SOKOLOWSKI

When sand or other granular materials are shaken, poured or sheared many intriguing phenomena can be observed. We will model the granular medium by a packing of elastic spheres and simulate it via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. The onset of fluidization can be determined and is in good agreement with experiments. On a vibrating plate we observe the formation of convection cells due to walls or amplitude modulations. Density and velocity profiles on conveyor belts are measured and the influence of an obstacle discussed. We mention various types of rheology for flow down an inclined chute or through a pipe and outflowing containers.


2011 ◽  
Vol 258 (5) ◽  
pp. 1756-1761 ◽  
Author(s):  
Ruling Chen ◽  
Min Liang ◽  
Jianbin Luo ◽  
Hong Lei ◽  
Dan Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document