Parametric Optimization and Ranking Analysis of Hybrid AA2024–SiC/Si3N4 Alloy Composites Based on Mechanical and Sliding Wear Performance

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mukesh Kumar ◽  
Ravi Kumar ◽  
Sourabh Bhaskar ◽  
Ashiwani Kumar ◽  
Subash Harizan
Author(s):  
R. Ahmed ◽  
O. Ali ◽  
C. C. Berndt ◽  
A. Fardan

AbstractThe global thermal spray coatings market was valued at USD 10.1 billion in 2019 and is expected to grow at a compound annual growth rate of 3.9% from 2020 to 2027. Carbide coatings form an essential segment of this market and provide cost-effective and environmental friendly tribological solutions for applications in aerospace, industrial gas turbine, automotive, printing, oil and gas, steel, and pulp and paper industries. Almost 23% of the world’s total energy consumption originates from tribological contacts. Thermal spray WC-Co coatings provide excellent wear resistance for industrial applications in sliding and rolling contacts. Some of these applications in abrasive, sliding and erosive conditions include sink rolls in zinc pots, conveyor screws, pump housings, impeller shafts, aircraft flap tracks, cam followers and expansion joints. These coatings are considered as a replacement of the hazardous chrome plating for tribological applications. The microstructure of thermal spray coatings is however complex, and the wear mechanisms and wear rates vary significantly when compared to cemented WC-Co carbides or vapour deposition WC coatings. This paper provides an expert review of the tribological considerations that dictate the sliding wear performance of thermal spray WC-Co coatings. Structure–property relationships and failure modes are discussed to grasp the design aspects of WC-Co coatings for tribological applications. Recent developments of suspension sprayed nanocomposite coatings are compared with conventional coatings in terms of performance and failure mechanisms. The dependency of coating microstructure, binder material, carbide size, fracture toughness, post-treatment and hardness on sliding wear performance and test methodology is discussed. Semiempirical mathematical models of wear rate related to the influence of tribological test conditions and coating characteristics are analysed for sliding contacts. Finally, advances for numerical modelling of sliding wear rate are discussed.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Vineet Shibe ◽  
Vikas Chawla

Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.


2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.


Author(s):  
Kazimierz Drozd ◽  
Mariusz Walczak ◽  
Mirosław Szala ◽  
Kamil Gancarczyk

The tribological performance of metalwork steel tools is of vital importance in both cold and hot working processes. One solution for improving metal tool life is the application of coatings. This paper investigates the effect of CrAlSiN thin-film PVD-deposition on the tribological behaviour of tool steel K340. The sliding wear performance of the coated K340 steel is analysed in relation to both the uncoated K340 steel and a range of tool steels dedicated to hot- and cold-working, such as X155CrVMo12-1, X37CrMoV5-1, X40CrMoV5-1, 40CrMnMo7 and 90MnCrV8. The investigated tool steels were heat-treated, while K340 was subjected to thermochemical treatment and then coated with a CrAlSiN hard film (K340/CrAlSiN). The hardness, chemical composition, phase structure and microstructure of steels K340 and K340/CrAlSiN are examined. Tribological tests were conducted using the ball-on-disc tester in compliance with the ASTM G99 standard. The tests were performed under dry unidirectional sliding conditions, using an Al2O3 ball as a counterbody. The wear factor and coefficient of friction are estimated and analysed with respect to hardness and alloying composition of the materials under study. SEM observations are made to identify the sliding wear mechanisms of the analysed tool steels and PVD-coated K340 steel. In contrast to the harsh abrasive-adhesive wear mechanism observed for uncoated tool steels, the abrasive wear dominates in case of the AlCrSiN. The deposited thin film effectively prevents the K304 substrate from harsh wear severe degradation. Moreover, thanks to the deposited coating, the K304/CrAlSiN sample has a COF of 0.529 and a wear factor of K=5.68×10−7 m3 N−1 m−1, while the COF of the reference tool steels ranges from 0.702 to 0.885 and their wear factor ranges from 1.68×10−5 m3 N−1 m−1 to 3.67×10−5 m3 N−1 m−1. The CrAlSiN deposition reduces the wear of the K340 steel and improves its sliding properties, which makes it a promising method for prolonging the service life of metalwork tools.


Author(s):  
Ming Qiu Zhang ◽  
Min Zhi Rong ◽  
Qing Bing Guo ◽  
Ying Luo

2021 ◽  
pp. 77-94
Author(s):  
Ashiwani Kumar ◽  
Amar Patnaik ◽  
Mukesh Kumar ◽  
Vikas Kukshal ◽  
M.J. Pawar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document