Dry Sliding Wear Behavior of Hot Pressed Fe-28Al and Fe-28Al-10Ti Alloys

2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.

2014 ◽  
Vol 592-594 ◽  
pp. 175-180 ◽  
Author(s):  
M.S. Prabhudev ◽  
Virupaxi Auradi ◽  
Karodi Venkateshwarlu ◽  
S.M. Suresha ◽  
S.A. Kori

In the present investigation, effect of minor additions of magnesium (Mg) content on the dry sliding wear behavior of A356 alloy has been reported. Alloy composition, normal pressures and sliding distances on A356 alloy has been studied. The worn surfaces were characterized by SEM microanalysis. The results indicate that, the wear rate of A356 alloy increases with increase in normal pressures and sliding distances in all the cases and decreases with 0.7% Mg addition to the A356 alloy. This is due to the change in microstructure resulting in improvement of hardness and strength of the alloy. The worn surface study indicates that, the formation of oxide layer between the mating surfaces during sliding improves sliding wear performance.


2011 ◽  
Vol 295-297 ◽  
pp. 256-259
Author(s):  
Jing Li ◽  
Jin Shan Zhao

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressed sintering. The mechanical properties and wear resistance were studied. The results show that Fe-28Al bulk material is mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. The mechanical properties such as the hardness and strength of Fe-28Al-10Ti are significantly improved compared with Fe-28Al, which is attributed to the grain refinement and solid solution reinforcing with the addition of Ti element. The fracture mode is mainly the intergranular fracture. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There is difference in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys. Under the load of 100N, there is obvious plastic deformation on the worn surface of Fe-28Al. Micro-crack and layer splitting occur on the surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows.


2009 ◽  
Vol 79-82 ◽  
pp. 1939-1942 ◽  
Author(s):  
Jing Li ◽  
Kuan Yu ◽  
Shi Lei ◽  
Zhong Quan Ma

Fe3Al intermetallics with different Al contents were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe3Al bulk materials are mainly characterized by the low ordered B2 structure. The wear resistance increased with increasing Al content, with the lowest volume loss of Fe-32Al and irregular value of Fe-30Al. There were obvious differences in wear mechanisms of sintered Fe3Al under different testing conditions. Under lower loads plastic deformation occurred on the wear surface and the wear performance is mainly particle abrasion, the characteristics of which are micro cutting and furrows. With higher loads, the stress concentration led to rapid crack propagation and eventually the fatigue fracture, which was characterized by brittle split of material.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 446
Author(s):  
Pankaj R Jadhav ◽  
B R Sridhar ◽  
Madeva Nagaral ◽  
Jayasheel I Harti ◽  
V Auradi

The present works manages readiness of the composites by mix stirring method. A356 amalgam 4 wt. % of B4C and A356-4 wt. % of Graphite and A356-4% B4C-4% Graphite hybrid composites were readied. To enhance the wetting and uniform conveyance of the particles, fortifications were preheated to a temperature of 500 Degree Celsius. The arranged MMCs are subjected to examining SEM instrument which affirms the homogenous uniform appropriation of smaller scale B4C and Graphite particles in the lattice combination without agglomeration. The wear protection of arranged composites was examined by performing dry sliding wear test utilizing DUCOM made stick on plate mechanical assembly. The tests were directed at a consistent heap of 3kg and sliding separation of 4000m over a speed of 100, 200 and 300 rpm. So also the other arrangement of investigations were led at consistent sped of 300 rpm and sliding separation of 4000m and with changing heap of 1kg, 2kg, and 3kg. The outcomes demonstrated that the wear protections of the composites were improved than the lattice material.   


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


2019 ◽  
Vol 895 ◽  
pp. 200-205
Author(s):  
B.S. Kanthraju ◽  
Bheemappa Suresha ◽  
H.M. Somashekar

This paper presents the effect of zirconia filler on mechanical properties and dry sliding wear of bidirectional hybrid (glass and basalt fiber) fabric reinforced epoxy (G-B/E) composites. Fabrication was done by hand layup method followed by compression molding. The effect of zirconia filler loading on mechanical characteristics like hardness, tensile and flexure of fabricated G-B/E composites were determined according to ASTM standards. Also, wear behavior under dry sliding condition was performed using pin-on-disc machine for different applied normal loads/sliding distance. Experimental results reveal that incorporation of zirconia filler improves the mechanical properties. Further, the wear test results indicated addition of zirconia into G-B/E hybrid fiber composites plays important role on specific wear rate under the tribo-conditions selected for the study. Further, inclusion of zirconia into G-B/E composites shows improved wear resistance and addition of 6 wt. % of zirconia exhibits least specific wear rate compared to other hybrid G-B/E composites. In addition, Scanning electron microscope images of selected mechanical test fractured coupons also have been discussed.


2019 ◽  
Vol 26 (09) ◽  
pp. 1950052
Author(s):  
SUBBARAYAN SIVASANKARAN

The present research paperfocusses on manufacture of AlSi6Cu4–3 wt.% TiO2 metal matrix composite (MMC) through liquid metallurgy route, and the manufactured composites are tested for their dry sliding wear behavior using response surface methodology (RSM). The extensive microstructural investigation is carried out to examine the dispersion of Titania particles, its bonding ability, and embedment characteristics with the matrix. The wear rate on the developed MMC is investigated and predicted using regression model. Further, the confirmation test is conducted to validate the model. The microstructures of the composite had revealed that TiO2 particles are dispersed in the Al matrix. Further, the surface plots show that the wear rate started to vary linearly with the function of load whereas the wear rate starts to vary nonlinearly with the function of the sliding velocity and the sliding distance. In addition, the worn surfaces were investigated through the scanning electron microscopewhich addressed the wear mechanisms and revealed that TiO2 particles enhance the wear performance of aluminum alloy by a reduction in material removal at all wear conditions.


Present manuscript deals with the sliding wear behaviour of SS- 304 and SS-316 with and without oxidation prior to wear test. The dry sliding wear performance of the steel samples was noted in as received conditions and then after oxidizing the sample at 600°C for 6 hours. The variations in hardness of both the steels before and after oxidation were estimated. The dry sliding wear tests were carried out using pin on disk technique at different sliding velocity and different loads, by using hardened steels counter surface. The worn surfaces were characterised by using FE-SEM/EDS analysis to ascertain the mechanism of wear in the samples. From various characterisation results and observations of volume loss, the effect of prior oxidation was analysed for the both stainless steels. It has been found that the oxidation leads to the formation of some protective oxides which leads to increase in the hardness of the samples due to which the wear performance was improved compared to the as received alloys.


2015 ◽  
Vol 830-831 ◽  
pp. 358-361 ◽  
Author(s):  
D.G. Sondur ◽  
D.M. Goudar ◽  
D.G. Mallapur ◽  
G.B. Rudrakshi

In the present investigation, microstructural characteristics and dry sliding wear behaviour of T6 heat treated conventionally cast Al-25Mg2Si-2Cu alloy have been discussed. The as cast alloy was subjected to solutionizing at 500°C for 5h and isothermal aging treatment at 190°C for different aging times. The micro structural characterization was studied using Scanning Electron Microscope with EDS analysis. The microstructure of as cast alloy consists of intermetallics of coarse block like sharp edged β-(Mg2Si), θ-(Al2Cu) and Q-(Al-Mg-Cu-Si) in the form of Chinese scripts and needles distributed randomly in the Al-matrix. The microstructure of heat treated alloy shows spheroidization of β phase and fine precipitation of θ-(Al2Cu) and Q phases. The dry sliding wear test was carried out using pin-on-disc machine. Age hardened alloy exhibits high wear resistance and minimum coefficient of friction over the entire range of applied loads and sliding velocities. Furthermore, high wear resistance was observed in the under aged condition compared to over ageing conditions.


Sign in / Sign up

Export Citation Format

Share Document