scholarly journals Group-based generalized q-rung orthopair average aggregation operators and their applications in multi-criteria decision making

Author(s):  
Azmat Hussain ◽  
Muhammad Irfan Ali ◽  
Tahir Mahmood ◽  
Muhammad Munir
2021 ◽  
pp. 1-23
Author(s):  
Peide Liu ◽  
Tahir Mahmood ◽  
Zeeshan Ali

Complex q-rung orthopair fuzzy set (CQROFS) is a proficient technique to describe awkward and complicated information by the truth and falsity grades with a condition that the sum of the q-powers of the real part and imaginary part is in unit interval. Further, Schweizer–Sklar (SS) operations are more flexible to aggregate the information, and the Muirhead mean (MM) operator can examine the interrelationships among the attributes, and it is more proficient and more generalized than many aggregation operators to cope with awkward and inconsistence information in realistic decision issues. The objectives of this manuscript are to explore the SS operators based on CQROFS and to study their score function, accuracy function, and their relationships. Further, based on these operators, some MM operators based on PFS, called complex q-rung orthopair fuzzy MM (CQROFMM) operator, complex q-rung orthopair fuzzy weighted MM (CQROFWMM) operator, and their special cases are presented. Additionally, the multi-criteria decision making (MCDM) approach is developed by using the explored operators based on CQROFS. Finally, the advantages and comparative analysis are also discussed.


Author(s):  
Faruk Karaaslan ◽  
Mohammed Allaw Dawood Dawood

AbstractComplex fuzzy (CF) sets (CFSs) have a significant role in modelling the problems involving two-dimensional information. Recently, the extensions of CFSs have gained the attention of researchers studying decision-making methods. The complex T-spherical fuzzy set (CTSFS) is an extension of the CFSs introduced in the last times. In this paper, we introduce the Dombi operations on CTSFSs. Based on Dombi operators, we define some aggregation operators, including complex T-spherical Dombi fuzzy weighted arithmetic averaging (CTSDFWAA) operator, complex T-spherical Dombi fuzzy weighted geometric averaging (CTSDFWGA) operator, complex T-spherical Dombi fuzzy ordered weighted arithmetic averaging (CTSDFOWAA) operator, complex T-spherical Dombi fuzzy ordered weighted geometric averaging (CTSDFOWGA) operator, and we obtain some of their properties. In addition, we develop a multi-criteria decision-making (MCDM) method under the CTSF environment and present an algorithm for the proposed method. To show the process of the proposed method, we present an example related to diagnosing the COVID-19. Besides this, we present a sensitivity analysis to reveal the advantages and restrictions of our method.


2021 ◽  
pp. 1-30
Author(s):  
Harish Garg ◽  
Zeeshan Ali ◽  
Zaoli Yang ◽  
Tahir Mahmood ◽  
Sultan Aljahdali

The paper aims to present a concept of a Complex interval-valued q-rung orthopair uncertain linguistic set (CIVQROULS) and investigated their properties. In the presented set, the membership grades are considered in terms of the interval numbers under the complex domain while the linguistic features are added to address the uncertainties in the data. To further discuss more, we have presented the operation laws and score function for CIVQROULS. In addition to them, we present some averaging and geometric operators to aggregate the different pairs of the CIVQROULS. Some fundamental properties of the proposed operators are stated. Afterward, an algorithm for solving the decision-making problems is addressed based on the proposed operator using the CIVQROULS features. The applicability of the algorithm is demonstrated through a case study related to brain tumors and their effectiveness is compared with the existing studies.


Author(s):  
Bhagawati Prasad Joshi ◽  
Abhay Kumar

The fusion of multidimensional intuitionistic fuzzy information plays an important part in decision making processes under an intuitionistic fuzzy environment. In this chapter, it is observed that existing intuitionistic fuzzy Einstein hybrid aggregation operators do not follow the idempotency and boundedness. This leads to sometimes illogical and even absurd results to the decision maker. Hence, some new intuitionistic fuzzy Einstein hybrid aggregation operators such as the new intuitionistic fuzzy Einstein hybrid weighted averaging (IFEHWA) and the new intuitionistic fuzzy Einstein hybrid weighted geometric (IFEHWG) were developed. The new IFEHWA and IFEHWG operators can weigh the arguments as well as their ordered positions the same as the intuitionistic fuzzy Einstein hybrid aggregation operators do. Further, it is validated that the defined operators are idempotent, bounded, monotonic and commutative. Then, based on the developed approach, a multi-criteria decision-making (MCDM) procedure is given. Finally, a numerical example is conducted to demonstrate the proposed method effectively.


2019 ◽  
Vol 36 (1) ◽  
pp. 595-607 ◽  
Author(s):  
Faisal Khan ◽  
Muhammad Sajjad Ali Khan ◽  
Muhammad Shahzad ◽  
Saleem Abdullah

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 364 ◽  
Author(s):  
Shahzaib Ashraf ◽  
Saleem Abdullah ◽  
Florentin Smarandache ◽  
Noor Amin

Recently, neutrosophic sets are found to be more general and useful to express incomplete, indeterminate and inconsistent information. The purpose of this paper is to introduce new aggregation operators based on logarithmic operations and to develop a multi-criteria decision-making approach to study the interaction between the input argument under the single valued neutrosophic (SVN) environment. The main advantage of the proposed operator is that it can deal with the situations of the positive interaction, negative interaction or non-interaction among the criteria, during decision-making process. In this paper, we also defined some logarithmic operational rules on SVN sets, then we propose the single valued neutrosophic hybrid aggregation operators as a tool for multi-criteria decision-making (MCDM) under the neutrosophic environment and discussd some properties. Finally, the detailed decision-making steps for the single valued neutrosophic MCDM problems were developed, and a practical case was given to check the created approach and to illustrate its validity and superiority. Besides this, a systematic comparison analysis with other existent methods is conducted to reveal the advantages of our proposed method. Results indicate that the proposed method is suitable and effective for decision process to evaluate their best alternative.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1081 ◽  
Author(s):  
Peng ◽  
Tian ◽  
Zhang ◽  
Song ◽  
Wang

Single-valued neutrosophic sets (SVNSs), which involve in truth-membership, indeterminacy-membership and falsity-membership, play a significant role in describing the decision-makers’ preference information. In this study, a single-valued neutrosophic multi-criteria decision-making (MCDM) approach is developed based on Shapley fuzzy measures and power aggregation operator that takes a correlative relationship among criteria into account and also simultaneously reduces the effects of abnormal preference information. Firstly, two aggregation operators, namely, generalized weighted single-valued neutrosophic power Shapley Choquet average (GWSVNPSCA) operator and generalized weighted single-valued neutrosophic power Shapley Choquet geometric (GWSVNPSCG) operator, are accordingly defined, and the corresponding properties are discussed as well. Secondly, based on the proposed aggregation operators, an integrated MCDM approach is proposed to effectively solve single-valued neutrosophic problems where the weight information is incompletely known. A programming model is constructed to obtain the optimal Shapley fuzzy measure. Next, the proposed operators are utilized to aggregate the decision-makers’ preference information. Finally, a theoretical example with tourism attraction selection is provided to examine the efficacy of the developed approach, in which the results is found reasonable and credible.


Sign in / Sign up

Export Citation Format

Share Document