scholarly journals Diabetic retinopathy detection and classification using capsule networks

Author(s):  
G. Kalyani ◽  
B. Janakiramaiah ◽  
A. Karuna ◽  
L. V. Narasimha Prasad

AbstractNowadays, diabetic retinopathy is a prominent reason for blindness among the people who suffer from diabetes. Early and timely detection of this problem is critical for a good prognosis. An automated system for this purpose contains several phases like identification and classification of lesions in fundus images. Machine learning techniques based on manual extraction of features and automatic extraction of features with convolution neural network have been presented for diabetic retinopathy detection. The recent developments like capsule networks in deep learning and their significant success over traditional machine learning methods for a variety of applications inspired the researchers to apply them for diabetic retinopathy diagnosis. In this paper, a reformed capsule network is developed for the detection and classification of diabetic retinopathy. Using the convolution and primary capsule layer, the features are extracted from the fundus images and then using the class capsule layer and softmax layer the probability that the image belongs to a specific class is estimated. The efficiency of the proposed reformed network is validated concerning four performance measures by considering the Messidor dataset. The constructed capsule network attains an accuracy of 97.98%, 97.65%, 97.65%, and 98.64% on the healthy retina, stage 1, stage 2, and stage 3 fundus images.

2019 ◽  
Vol 8 (2) ◽  
pp. 4833-4837

Technology is growing day by day and the influence of them on our day-to-day life is reaching new heights in the digitized world. Most of the people are prone to the use of social media and even minute details are getting posted every second. Some even go to the extent of posting even suicide related issues. This paper addresses the issue of suicide and is predicting the suicide issues on social media and their semantic analysis. With the help of Machine Learning techniques and semantic analysis of sentiments the prediction and classification of suicide is done. The model of approach is a four-tier approach, which is very beneficial as it uses the twitter4J data by using weka tool and implementing it on WordNet. The precision and accuracy aspects are verified as the parameters for the performance efficiency of the procedure. We also give a solution for the lack of resources regarding the terminological resources by providing a phase for the generation of records of vocabulary also.


The challenges that are to be faced while handling with hate speech is not a new thing. From thepast few years due to the boosted usage of internet, hateful activities across social media is increasing rapidly. Improved technology has made it possible to create a platform where people can feel free to share their opinions and experiences.it wouldn't be a problem if this is just the case. but we can also see hateful comments running throughout the social media targeting a person or a community. Hate speech is the statement that targets a person or community of people discriminating based on caste, creed, nationality etc. Our project aims at resolving the above problem by using Machine Learning techniques to automatically detect hate speech and classify them into various classes such as extremely positive, positive neutral etc. We have used classifier that works based on the lexicons and finally compare it with other classifiers that doesn't use lexicons. Aimed beneficiaries of this model are the people who are being targeted on social media. Based on the results they can calculate intensity of the comments.


2020 ◽  
Vol 10 (9) ◽  
pp. 2252-2258
Author(s):  
Jiatong Wang ◽  
Tiantian Zhu ◽  
Shan Liang ◽  
R. Karthiga ◽  
K. Narasimhan ◽  
...  

Background and Objective: Breast cancer is fairly common and widespread form of cancer among women. Digital mammogram, thermal images of breast and digital histopathological images serve as a major tool for the diagnosis and grading of cancer. In this paper, a novel attempt has been proposed using image analysis and machine learning algorithm to develop an automated system for the diagnosis and grading of cancer. Methods: BreaKHis dataset is employed for the present work where images are available with different magnification factor namely 40×, 100×, 200×, 400× and 200× magnification factor is utilized for the present work. Accurate preprocessing steps and precise segmentation of nuclei in histopathology image is a necessary prerequisite for building an automated system. In this work, 103 images from benign and 103 malignant images are used. Initially color image is reshaped to gray scale format by applying Otsu thresholding, followed by top hat, bottom hat transform in preprocessing stage. The threshold value selected based on Ridler and calvard algorithm, extended minima transform and median filtering is applied for doing further steps in preprocessing. For segmentation of nuclei distance transform and watershed are used. Finally, for feature extraction, two different methods are explored. Result: In binary classification benign and malignant classification is done with the highest accuracy rate of 89.7% using ensemble bagged tree classifier. In case of multiclass classification 5-class are taken which are adenosis, fibro adenoma, tubular adenoma, mucinous carcinoma and papillary carcinoma the combination of multiclass classification gives the accuracy of 88.1% using ensemble subspace discriminant classifier. To the best of author’s knowledge, it is the first made in a novel attempt made for binary and multiclass classification of histopathology images. Conclusion: By using ensemble bagged tree and ensemble subspace discriminant classifiers the proposed method is efficient and outperform the state of art method in the literature.


Author(s):  
Prashant Udawant ◽  
Atul Patidar ◽  
Abhijeet Singh ◽  
Atyant Yadav

There are various applications of image processing in the field of engineering, agriculture, graphic design, commerce, historical research and architecture. This paper studies and compares most of the research works done in the field of image processing and machine learning for the purpose of image classification based on the features extracted from the image through different feature extraction techniques. The machine learning techniques studied in this paper are Convolution Neural Network (CNN), Support Vector Machine (SVM) and Fuzzy logic. The paper studies and compares these methods for their implementation in classification of digital images. Color based segmentation models are used to segment the specific features from image and categories them into different classes. First image preprocessing is done on the image to reduce the noise from the image. Then image segmentation and edge detection techniques are used to identify the objects in the image and extract the features through which the image can be labeled with a specific class.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
K Sooknunan ◽  
M Lochner ◽  
Bruce A Bassett ◽  
H V Peiris ◽  
R Fender ◽  
...  

Abstract With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the eleven classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78%. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97%, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19%.


Sign in / Sign up

Export Citation Format

Share Document