scholarly journals Evolution in the formation of graphene nanocapsules from coal tar pitch

2020 ◽  
Vol 7 (4) ◽  
pp. 816-824
Author(s):  
D. M. Puente-Siller ◽  
A. E. García-Castillo ◽  
J. A. López-Corpus ◽  
A. Perea-Garduño

AbstractIt has recently been reported that coal tar pitch (CTP) can be utilised as raw material for the production of graphene nanocapsules (GNCs) because it is formed by a great quantity of aromatic organic compounds (which promote the rearrangement of double bonds by a process of polymerisation). Due to the importance of graphene and the search for a non-expensive methodology to produce it, this work used CTP to synthesise GNCs using an in situ activation technique at low temperatures and evaluating the effect of the working temperature on the formation of such nanostructures. In other words, analysing the form of the particle as the temperature rises from 600 to 900 °C. As result of the experimentation, powders were obtained and analysed by the techniques of X-Ray Diffraction, Raman Spectroscopy and Microscopy, employing Field Emission Scanning Electron Microscopy by normal mode as well as by Scanning Transmission Electron Microscopy and a High-Resolution Scanning Electron Microscopy. The results show that working with temperatures between 800 and 850 °C promotes the production of GNCs, considering that their size reduces as the working temperature rises.

2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 610-613 ◽  
pp. 2356-2360
Author(s):  
Hong Liang Hua ◽  
Yun Wang ◽  
Yu Jia Wang ◽  
Shi Jun Ruan ◽  
Chao Zeng ◽  
...  

After washing, milling and calcining, the graphite rods recycled from waste dry batteries were used as raw material to prepare expandable graphite by chemical oxidation (using acetic anhydride as inserting and potassium dichromate as oxidant), the expanded graphite was prepared from the obtained expandable graphite by microwave radiation (MW) at 1000W for 60s.The characterization of infrared spectroscopy (IR) and scanning electron microscopy (SEM) of obtained expanded graphite have been discussed. The results show that it is feasible to prepare expanded graphite using graphite rods recycled from waste dry batteries.


2015 ◽  
Vol 21 (5) ◽  
pp. 1314-1326 ◽  
Author(s):  
Josefa Roselló ◽  
Lourdes Soriano ◽  
M. Pilar Santamarina ◽  
Jorge L. Akasaki ◽  
José Luiz P. Melges ◽  
...  

AbstractAgrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350–850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications.


2014 ◽  
Vol 20 (1) ◽  
pp. 124-132 ◽  
Author(s):  
Binay Patel ◽  
Masashi Watanabe

AbstractScanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.


2017 ◽  
Vol 13 ◽  
pp. 55 ◽  
Author(s):  
Vladimír Hrbek ◽  
Veronika Koudelková ◽  
Zdeněk Prošek ◽  
Pavel Tesárek

The reduction of industrial pollution is recently one of main goals over all fields. In civil engineering, re-cycling of structural waste provides wide opportunity contributing this effort. This paper focus on re-use of concrete waste, which after further processing can be used in new constructions as partial supplement to the mixture. To investigate the impact of re-cycled concrete addition, it is necessary to determine mechanical and structural parameters of individual phases in the “raw” material. For this purpose, grid indentation and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM, EDX) are combined to determine properties of concrete sample.


Author(s):  
T. Nagatani

Although the main development of scanning electron microscopy (SEM) has been accomplished mostly by the Cambridge group and it has not been changed so much for about two decades, it should be noted that there have been two important developments to pursuing high resolution of better than 1nm.Most notably, use of a field emission gun developed by Crewe et al for the scanning transmission electron microscope (STEM) to form a fine electron beam has been most effective in SEMs due to its high brightness and low energy spread. Thus, several models of field emission (FE) SEMs have been developed in the early ’70s and commercialized with a resolution of 2∼3nm at around 30kV.The second development is to use a highly excited objective lens. The specimen has to be set inside the pole-pieces (so-called “in-lens” type).


2016 ◽  
Vol 22 (4) ◽  
pp. 754-767 ◽  
Author(s):  
Kayla X. Nguyen ◽  
Megan E. Holtz ◽  
Justin Richmond-Decker ◽  
David A. Muller

AbstractA long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.


2012 ◽  
Vol 482-484 ◽  
pp. 2301-2306 ◽  
Author(s):  
Fang Qin Cheng ◽  
Shu Yan Cheng ◽  
Yan Xia Guo ◽  
Li Qiong Cao

A novel coal dust depressor was prepared by alkalization and etherficayion reactions using wastepaper as raw material. The sample was characterized by means of FTIR spectroscopy (FTIR)、scanning electron microscopy (SEM)、X-ray diffraction (XRF) and viscometer measurements. The coal dust inhibitor was developed to suppress flying dust over coal dump and conveyor. The result shows that flying coal dust was prevented by intrinsic viscosity of coal dust depressor which was sprayed on the surface stock pile can make the surface material bond with each other to form layer of crust, having a role of dust prevention. Application of the coal dust depressor can reduce the losses of coal and protect the environment from being polluted.


Sign in / Sign up

Export Citation Format

Share Document