scholarly journals Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Kejun Liao ◽  
Chengbo Li ◽  
Lisha Xie ◽  
Yuan Yuan ◽  
Shurong Wang ◽  
...  

AbstractOrganic–inorganic metal halide perovskite solar cells (PSCs) have recently been considered as one of the most competitive contenders to commercial silicon solar cells in the photovoltaic field. The deposition process of a perovskite film is one of the most critical factors affecting the quality of the film formation and the photovoltaic performance. A hot-casting technique has been widely implemented to deposit high-quality perovskite films with large grain size, uniform thickness, and preferred crystalline orientation. In this review, we first review the classical nucleation and crystal growth theory and discuss those factors affecting the hot-casted perovskite film formation. Meanwhile, the effects of the deposition parameters such as temperature, thermal annealing, precursor chemistry, and atmosphere on the preparation of high-quality perovskite films and high-efficiency PSC devices are comprehensively discussed. The excellent stability of hot-casted perovskite films and integration with scalable deposition technology are conducive to the commercialization of PSCs. Finally, some open questions and future perspectives on the maturity of this technology toward the upscaling deposition of perovskite film for related optoelectronic devices are presented.

RSC Advances ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 648-655 ◽  
Author(s):  
Si Chen ◽  
Xiao Yu ◽  
Xin Cai ◽  
Ming Peng ◽  
Kai Yan ◽  
...  

PbCl2 is used as an additive to assist perovskite film formation in a two-step sequential deposition process and the device achieved an average efficiency enhancement of approximately 30% compared to the control group.


Author(s):  
Thierry Pauporté ◽  
Daming zheng

Nowadays, overcoming the stability issue of perovskite solar cells (PSCs) while keeping high efficiency has become an urgent need for the future of this technology. By using x-ray diffraction (XRD),...


2019 ◽  
Vol 7 (9) ◽  
pp. 4977-4987 ◽  
Author(s):  
Jiangzhao Chen ◽  
Seul-Gi Kim ◽  
Xiaodong Ren ◽  
Hyun Suk Jung ◽  
Nam-Gyu Park

Fabrication of high-quality perovskite films with a large grain size and fewer defects is always crucial to achieve efficient and stable perovskite solar cells (PSCs).


Solar RRL ◽  
2020 ◽  
pp. 2000606
Author(s):  
Muhammad. Abdel-Shakour ◽  
Towhid H. Chowdhury ◽  
Kiyoto Matsuishi ◽  
Idriss Bedja ◽  
Yutaka Moritomo ◽  
...  

Author(s):  
N. Ashurov ◽  
B. L. Oksengendler ◽  
S. E. Maksimov ◽  
S. Rashiodva ◽  
A. R. Ishteev ◽  
...  

The fundamental problems of the modern state of the studies of organic-inorganic organo-halide perovskites (OHP) as basis for high efficiency thin film solar cells are discussed. Perovskite varieties and background properties are introduced. The chronology of development of the studies in this direction has been presented — structural aspects of these OHP perovskites, from early 2D to recent 3D MAPbI3 perovskites and important technological aspects of smooth thin film structure creation by various techniques, such as solvent engineering, spin- and dip-coating, vacuum deposition, cation exchange approach, nanoimprinting (particularly, a many-sided role of polymers). The most important theoretical problems such as electronic structure of lattice, impurity and defect states in pure and mixed perovskites, suppressed electron-hole recombination, extra-long lifetimes, and diffusion lengths are analyzed. Degradation effects associated with moisture and photo irradiation, as well as degradation of metallic electrodes to OHP solar cells have been considered. The application of carbon nanostructures: carbon nanotubes (CNT) and graphene as stable semitransparent charge collectors to OHP perovskites is demonstrated on the example of original results of authors.


2020 ◽  
Vol 8 (17) ◽  
pp. 8447-8454 ◽  
Author(s):  
Junwen Zhang ◽  
Tongle Bu ◽  
Jing Li ◽  
Hengyi Li ◽  
Yanping Mo ◽  
...  

A two-step sequential blade-coating process in air to fabricate high-efficiency perovskite solar cells and modules.


2021 ◽  
Vol 42 (11) ◽  
pp. 112201
Author(s):  
Xiao Zhang ◽  
Sai Ma ◽  
Jingbi You ◽  
Yang Bai ◽  
Qi Chen

Abstract Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells (PSCs). Here, we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups. The power conversion efficiency (PCE) has increased from 20.97% to 21.97% after introducing a 3-isocyanatopropyltrimethoxy silane (IPTMS) molecule with carbonyl group, while a trimethoxy[3-(phenylamino)propyl] silane (PAPMS) molecule containing aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage. The improved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation. In addition, the devices with carbonyl group modification exhibit outstanding thermal stability, which maintain 90% of its initial PCE after 1500 h exposure. This work provides a guideline for the design of passivation molecules aiming to deliver the efficiency and thermal stability simultaneously.


2019 ◽  
Vol 7 (24) ◽  
pp. 7288-7298 ◽  
Author(s):  
Ju Ho Lee ◽  
Young Wook Noh ◽  
In Su Jin ◽  
Sang Hyun Park ◽  
Jae Woong Jung

Current–voltage hysteresis is a critical issue that impacts the photovoltaic performance of perovskite solar cells, and thus, it is imperative to develop high-efficiency perovskite solar cells without hysteresis behavior.


Sign in / Sign up

Export Citation Format

Share Document