scholarly journals Ultra-sensitive Nanoprobe Modified with Tumor Cell Membrane for UCL/MRI/PET Multimodality Precise Imaging of Triple-Negative Breast Cancer

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanyi Fang ◽  
Mengting Li ◽  
Qingyao Liu ◽  
Yongkang Gai ◽  
Lujie Yuan ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed, and human epidermal growth factor receptor 2 is not amplified or overexpressed either, which make the clinical diagnosis and treatment very challenging. Molecular imaging can provide an effective way to diagnose TNBC. Upconversion nanoparticles (UCNPs), are a promising new generation of molecular imaging probes. However, UCNPs still need to be improved for tumor-targeting ability and biocompatibility. This study describes a novel probe based on cancer cell membrane-coated upconversion nanoparticles (CCm-UCNPs), owing to the low immunogenicity and homologous-targeting ability of cancer cell membranes, and modified multifunctional UCNPs. This probe exhibits excellent performance in breast cancer molecular classification and TNBC diagnosis through UCL/MRI/PET tri-modality imaging in vivo. By using this probe, MDA-MB-231 was successfully differentiated between MCF-7 tumor models in vivo. Based on the tumor imaging and molecular classification results, the probe is also expected to be modified for drug delivery in the future, contributing to the treatment of TNBC. The combination of nanoparticles with biomimetic cell membranes has the potential for multiple clinical applications.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hanyi Fang ◽  
Yongkang Gai ◽  
Sheng Wang ◽  
Qingyao Liu ◽  
Xiao Zhang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a kind of aggressive breast cancer with a high rate of metastasis, poor overall survival time, and a low response to targeted therapies. To improve the therapeutic efficacy and overcome the drug resistance of TNBC treatments, here we developed the cancer cell membrane-coated oxygen delivery nanoprobe, CCm–HSA–ICG–PFTBA, which can improve the hypoxia at tumor sites and enhance the therapeutic efficacy of the photodynamic therapy (PDT), resulting in relieving the tumor growth in TNBC xenografts. Results The size of the CCm–HSA–ICG–PFTBA was 131.3 ± 1.08 nm. The in vitro 1O2 and ROS concentrations of the CCm–HSA–ICG–PFTBA group were both significantly higher than those of the other groups (P < 0.001). In vivo fluorescence imaging revealed that the best time window was at 24 h post-injection of the CCm–HSA–ICG–PFTBA. Both in vivo 18F-FMISO PET imaging and ex vivo immunofluorescence staining results exhibited that the tumor hypoxia was significantly improved at 24 h post-injection of the CCm–HSA–ICG–PFTBA. For in vivo PDT treatment, the tumor volume and weight of the CCm–HSA–ICG–PFTBA with NIR group were both the smallest among all the groups and significantly decreased compared to the untreated group (P < 0.01). No obvious biotoxicity was observed by the injection of CCm–HSA–ICG–PFTBA till 14 days. Conclusions By using the high oxygen solubility of perfluorocarbon (PFC) and the homologous targeting ability of cancer cell membranes, CCm–HSA–ICG–PFTBA can target tumor tissues, mitigate the hypoxia of the tumor microenvironment, and enhance the PDT efficacy in TNBC xenografts. Furthermore, the HSA, ICG, and PFC are all FDA-approved materials, which render the nanoparticles highly biocompatible and enhance the potential for clinical translation in the treatment of TNBC patients.


2021 ◽  
Author(s):  
Hanyi Fang ◽  
Yongkang Gai ◽  
Sheng Wang ◽  
Qingyao Liu ◽  
Xiao Zhang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a kind of aggressive breast cancer with a high rate of metastasis, poor overall survival time, and a low response to targeted therapies. To improve the therapeutic efficacy and overcome the drug resistance of TNBC treatments, here we developed the cancer cell membrane-coated oxygen delivery nanoprobe, CCm-HSA-ICG-PFTBA, which can improve the hypoxia at tumor sites and enhance the therapeutic efficacy of the photodynamic therapy (PDT), resulting in relieving the tumor growth in TNBC xenografts. Results The size of the CCm-HSA-ICG-PFTBA was 131.3 ± 1.08 nm. The in vitro 1O2 and ROS concentrations of the CCm-HSA-ICG-PFTBA group were both significantly higher than those of the other groups (P < 0.001). In vivo fluorescence imaging revealed that the best time window was at 24 h post-injection of the CCm-HSA-ICG-PFTBA. Both in vivo 18F-FMISO PET imaging and ex vivo immunofluorescence staining results exhibited that the tumor hypoxia was significantly improved at 24 h post-injection of the CCm-HSA-ICG-PFTBA. For in vivo PDT treatment, the tumor volume and weight of the CCm-HSA-ICG-PFTBA with NIR group were both the smallest among all the groups and significantly decreased compared to the untreated group (P < 0.01). No obvious biotoxicity was observed by the injection of CCm-HSA-ICG-PFTBA till 14 days. Conclusions By using the high oxygen solubility of perfluorocarbon (PFC) and the homologous targeting ability of cancer cell membranes, CCm-HSA-ICG-PFTBA can target tumor tissues, mitigate the hypoxia of the tumor microenvironment, and enhance the PDT efficacy in TNBC xenografts. Furthermore, the HSA, ICG, and PFC are all FDA-approved materials, which render the nanoparticles highly biocompatible and enhance the potential for clinical translation in the treatment of TNBC patients.


2014 ◽  
Vol 8 (Suppl 4) ◽  
pp. P22
Author(s):  
Klesia Madeira ◽  
Murilo Cerri ◽  
Renata Daltoé ◽  
Alice Herlinger ◽  
João Filho ◽  
...  

SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 417 ◽  
Author(s):  
Masato Terashima ◽  
Kazuko Sakai ◽  
Yosuke Togashi ◽  
Hidetoshi Hayashi ◽  
Marco A De Velasco ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 641
Author(s):  
Lisa Belfiore ◽  
Darren N. Saunders ◽  
Marie Ranson ◽  
Kara L. Vine

The urokinase plasminogen activator and its receptor (uPA/uPAR) are biomarkers for metastasis, especially in triple-negative breast cancer. We prepared anti-mitotic N-alkylisatin (N-AI)-loaded liposomes functionalized with the uPA/uPAR targeting ligand, plasminogen activator inhibitor type 2 (PAI-2/SerpinB2), and assessed liposome uptake in vitro and in vivo. Receptor-dependent uptake of PAI-2-functionalized liposomes was significantly higher in the uPA/uPAR overexpressing MDA-MB-231 breast cancer cell line relative to the low uPAR/uPAR expressing MCF-7 breast cancer cell line. Furthermore, N-AI cytotoxicity was enhanced in a receptor-dependent manner. In vivo, PAI-2 N-AI liposomes had a plasma half-life of 5.82 h and showed an increased accumulation at the primary tumor site in an orthotopic MDA-MB-231 BALB/c-Fox1nu/Ausb xenograft mouse model, relative to the non-functionalized liposomes, up to 6 h post-injection. These findings support the further development of N-AI-loaded PAI-2-functionalized liposomes for uPA/uPAR-positive breast cancer, especially against triple-negative breast cancer, for which the prognosis is poor and treatment is limited.


2021 ◽  
Author(s):  
Ozlem Yedier-Bayram ◽  
Bengul Gokbayrak ◽  
Ali Cenk Aksu ◽  
Ayse Derya Cavga ◽  
Alisan Kayabolen ◽  
...  

Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To discover new drug targets for more targeted and personalized therapies, functional interrogation of epigenetic modifiers is essential. We therefore generated an epigenome-wide CRISPR-Cas9 knock-out library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution, depletion of essential genes and steady behaviors of non-targeting sgRNAs. From this, we discovered novel epigenetic modifiers besides previously known ones that regulate triple-negative breast cancer and prostate cancer cell fitness. With further validation assays, we confirmed the growth-regulatory function of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in triple negative breast cancer cells. Overall, we show that EPIKOL, a focused sgRNA library targeting approximately 800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness and serve as a tool to offer novel anti-cancer targets. With its thoroughly generated epigenome-wide gene list, and the relatively high number of sgRNAs per gene, EPIKOL offers a great advantage to study functional roles of epigenetic modifiers in a wide variety of research applications, such as screens on primary cells, patient-derived xenografts as well as in vivo models.


2020 ◽  
Vol 19 ◽  
pp. 153473542097586
Author(s):  
Myfanwy Jane Webb ◽  
Craig Kukard

We reviewed the research into the mechanisms of growth of triple negative breast cancer (TNBC) based on laboratory pre-clinical studies that have shaped understanding of the disease over the past decade. In response to these findings, we propose an approach to potentially prevent cancer metabolic adaptation and recurrence. This paper collates pre-clinical results, first to determine the tumor’s mechanisms of growth and then to source natural substances that could potentially suppress those mechanisms. The results from in vivo and in vitro studies of TNBC were combined first to select 10 primary mechanisms (Hypoxia-inducible factor 1α, Hedgehog, MAPK, MTAP, NF-κ B, Notch, P13K, STAT3, and Wnt signaling pathways plus p53 and POL2A gene expression) that promote TNBC growth, and second to propose a treatment array of 21 natural compounds that suppress laboratory models of TNBC via these mechanisms. We included BRCA mutations in the review process, but only pathways with the most preclinical studies utilizing natural products were included. Then we outlined potential biomarkers to assess the changes in the micro-environment and monitor biochemical pathway suppression. This suppression-centric aim targets these mechanisms of growth with the goal of potentially halting tumor growth and preventing cancer cell metabolic adaptation. We chose TNBC to demonstrate this 5-step strategy of supplementary therapy, which may be replicated for other tumor types.


2020 ◽  
Vol 43 (6) ◽  
pp. 1049-1066
Author(s):  
Yang Zhang ◽  
Bingwei Xu ◽  
Junfeng Shi ◽  
Jieming Li ◽  
Xinlan Lu ◽  
...  

Abstract Purpose Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. Methods Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. Results We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. Conclusion Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.


2021 ◽  
Author(s):  
Samantha L Payne ◽  
Priyanka Ram ◽  
Deepti H Srinivasan ◽  
Thanh T Le ◽  
Michael Levin ◽  
...  

There is a critical need to better understand the mechanisms that drive local cell invasion and metastasis to develop new therapeutics targeting metastatic disease. Bioelectricity is an important mediator of cellular processes and changes in the resting membrane potential (RMP) are associated with increased cancer cell invasion. However, the mechanism is not well understood. Our data demonstrate that altering the RMP of triple-negative breast cancer (TNBC) cells by manipulating potassium channel expression increases in vitro invasion, in vivo tumor growth, and metastasis, and is accompanied by changes in gene expression associated with cell adhesion. We describe a novel mechanism for RMP-mediated cell migration involving cadherin-11 and the MAPK pathway. Importantly, we identify a new strategy to target metastatic TNBC in vivo by repurposing FDA-approved potassium channel blockers. Our results provide an understanding of the mechanisms by which bioelectricity regulates cancer cell invasion and metastasis that could lead to a new class of therapeutics for patients with metastatic disease.


Sign in / Sign up

Export Citation Format

Share Document