scholarly journals Precise Thermoplastic Processing of Graphene Oxide Layered Solid by Polymer Intercalation

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zeshen Li ◽  
Fan Guo ◽  
Kai Pang ◽  
Jiahao Lin ◽  
Qiang Gao ◽  
...  

Abstract The processing capability is vital for the wide applications of materials to forge structures as-demand. Graphene-based macroscopic materials have shown excellent mechanical and functional properties. However, different from usual polymers and metals, graphene solids exhibit limited deformability and processibility for precise forming. Here, we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide (GO) precursor. The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains. We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity, which becomes the criteria for thermal plastic forming of GO solids. By thermoplastic forming, the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm. The plastic-formed structures maintain the structural integration with outstanding electrical (3.07 × 105 S m−1) and thermal conductivity (745.65 W m−1 K−1) after removal of polymers. The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications. Graphical abstract

Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4601-4608 ◽  
Author(s):  
Pengyu Zhuang ◽  
Hanyu Fu ◽  
Ning Xu ◽  
Bo Li ◽  
Jun Xu ◽  
...  

AbstractInterfacial solar vapor generation has revived the solar-thermal-based desalination due to its high conversion efficiency of solar energy. However, most solar evaporators reported so far suffer from severe salt-clogging problems during solar desalination, leading to performance degradation and structural instability. Here, we demonstrate a free-standing salt-rejecting reduced graphene oxide (rGO) membrane serving as an efficient, stable, and antisalt-fouling solar evaporator. The evaporation rate of the membrane reaches up to 1.27 kg m−2 h−1 (solar–thermal conversion efficiency ∼79%) under one sun, out of 3.5 wt% brine. More strikingly, due to the tailored narrow interlayer spacing, the rGO membrane can effectively reject ions, preventing salt accumulation even for high salinity brine (∼8 wt% concentration). With enabled salt-antifouling capability, flexibility, as well as stability, our rGO membrane serves as a promising solar evaporator for high salinity brine treatment.


2017 ◽  
Vol 114 (46) ◽  
pp. E9793-E9801 ◽  
Author(s):  
Xinglin Lu ◽  
Xunda Feng ◽  
Jay R. Werber ◽  
Chiheng Chu ◽  
Ines Zucker ◽  
...  

The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacteriumEscherichia coli, GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.


2018 ◽  
Vol 28 (18) ◽  
pp. 1707247 ◽  
Author(s):  
Xinyu Wang ◽  
Fang Wan ◽  
Linlin Zhang ◽  
Zifang Zhao ◽  
Zhiqiang Niu ◽  
...  

2018 ◽  
Vol 29 (32) ◽  
pp. 325706 ◽  
Author(s):  
Maheshwari Kavirajan Kavitha ◽  
Tushar Sakorikar ◽  
Pramitha Vayalamkuzhi ◽  
Manu Jaiswal

RSC Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 2260-2266 ◽  
Author(s):  
Lifeng Cui ◽  
Yanan Xue ◽  
Suguru Noda ◽  
Zhongming Chen

We report a synthesis of a self-supporting composite cathode film, wherein aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs.


Sign in / Sign up

Export Citation Format

Share Document