Strain history of 3D printed bilayer structure with flexible elastomer and shape memory polymer filaments during thermal tensile test

Author(s):  
Ziyi Su ◽  
Kazuaki Inaba ◽  
Farid Triawan
Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


2018 ◽  
Vol 37 (8) ◽  
pp. 3222-3228 ◽  
Author(s):  
Han Jia ◽  
Shu-Ying Gu ◽  
Kun Chang

Author(s):  
Akash Pandey ◽  
Gurminder Singh ◽  
Sunpreet Singh ◽  
Kanishak Jha ◽  
Chander Prakash

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Trenton Cersoli ◽  
Alexis Cresanto ◽  
Callan Herberger ◽  
Eric MacDonald ◽  
Pedro Cortes

Shape memory polymers (SMPs) are materials capable of changing their structural configuration from a fixed shape to a temporary shape, and vice versa when subjected to a thermal stimulus. The present work has investigated the 3D printing process of a shape memory polymer (SMP)-based polyurethane using a material extrusion technology. Here, SMP pellets were fed into a printing unit, and actuating coupons were manufactured. In contrast to the conventional film-casting manufacturing processes of SMPs, the use of 3D printing allows the production of complex parts for smart electronics and morphing structures. In the present work, the memory performance of the actuating structure was investigated, and their fundamental recovery and mechanical properties were characterized. The preliminary results show that the assembled structures were able to recover their original conformation following a thermal input. The printed parts were also stamped with a QR code on the surface to include an unclonable pattern for addressing counterfeit features. The stamped coupons were subjected to a deformation-recovery shape process, and it was observed that the QR code was recognized after the parts returned to their original shape. The combination of shape memory effect with authentication features allows for a new dimension of counterfeit thwarting. The 3D-printed SMP parts in this work were also combined with shape memory alloys to create a smart actuator to act as a two-way switch to control data collection of a microcontroller.


Author(s):  
Yongsan An ◽  
Joon Hyeok Jang ◽  
Ji Ho Youk ◽  
Woong-Ryeol Yu

Abstract Four-dimensional (4D) printing is used to describe three-dimensional (3D)-printed objects with properties that change over time. Shape memory polymers (SMPs) are representative materials for 4D printing technologies. The ability to print geometrically complex, free-standing forms with SMPs is crucial for successful 4D printing. In this study, an SMP capable of frontal polymerization featuring exothermic self-propagation was synthesized by adding cyclooctene to a poly(dicyclopentadiene) network, resulting in switching segments. The rheological properties of this SMP were controlled by adjusting incubation time. A nozzle system was designed such that the SMP could be printed with simultaneous polymerization to yield a free-standing structure. The printing speed was set to 3 cm/min according to the frontal polymerization speed. A free-standing, hexagonal spiral was successfully printed and printed spiral structure showed excellent shape memory performance with a fixity ratio of about 98% and a recovery ratio of 100%, thereby demonstrating the 3D printability and shape memory performance of frontally polymerizable SMPs.


2016 ◽  
Vol 725 ◽  
pp. 378-382 ◽  
Author(s):  
Kohei Takeda ◽  
Shunichi Hayashi ◽  
Kazunori Ueki

Recently, the 3D printer which can make products in a short time without cutting or casting has been attracted worldwide attention. If we use the 3D printer, it is possible that a customized product which is well suited to the individual is fabricated with low cost and in a short time. On the other hand, in the intelligent materials, shape memory polymer (SMP) has been practically used. In SMP, shape fixity and shape recovery appear based on the difference of properties of molecular motion between above and below the glass transition temperature in temperature variation. The thermomechanical property of SMP is close to that of the human body around glass the transition temperature. Since SMP has these characteristics, it can be applied to the elements coming into contact with body as a nursing-care robot in the medical field. Hence, if we make a product with SMP using the 3D printer, the new device which is well suited to the individual can be developed. In the present paper, the deformation properties of SMP made by the fused deposition modeling (FDM) 3D printer were investigated. The results obtained are as follows. (1) The deformation resistance and recovery strain in unloading of the 3D printed SMP under a low printing rate are higher and larger than these of the high printing rate. (2) If we heat the 3D printed SMP under a high printing rate, it does not recover the original shape perfectly since the residual stress appears during printing.


Author(s):  
Chen Yang ◽  
Manish Boorugu ◽  
Andrew Dopp ◽  
Howon Lee

Metamaterials are architected artificial materials engineered to exhibit properties not typically found in natural materials. Increasing attention has recently been given to mechanical metamaterials with unprecedented mechanical properties including high stiffness, strength, or/and resilience even at extremely low density. These unusual mechanical performances emerge from the three-dimensional (3D) spatial arrangement of the micro-structural elements designed to effectively distribute mechanical loads. Recent advances in additive manufacturing in micro-/nano-scale have catalyzed the growing interest in this field. This work presents a new lightweight microlattice with tunable and recoverable mechanical properties using a three-dimensionally architected shape memory polymer (SMP). SMP microlattices were fabricated utilizing our micro additive manufacturing technique called projection micro-stereolithography (PμSL), which uses a digital micro-mirror device (DMD™) as a dynamically reconfigurable photomask. We use a photo-crosslinkable and temperature-responsive SMP which can retain its large deformation until heated for spontaneous shape recovery. In addition, it exhibits remarkable elastic modulus changes during this transition. We demonstrate that mechanical responses of the micro 3D printed SMP microlattice can be reversibly tuned by temperature control. Mechanical testing result showed that stiffness of a SMP microlattice changed by two orders of magnitude by a moderate temperature shift by 60°C. Furthermore, the shape memory effect of the SMP allows for full restitution of the original shape of the microlattice upon heating even after substantial mechanical deformation. Mechanical metamaterials with lightweight, reversibly tunable properties, and shape recoverability can potentially lead to new smart structural systems that can effectively react and adapt to varying environments or unpredicted loads.


Sign in / Sign up

Export Citation Format

Share Document