Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament

2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.

Fused Deposition Modeling (FDM) is one of the Additive Manufacturing (AM) technology. Ultrasonic-assisted FDM system has been proven to improve the mechanical properties of the printed specimens. This study aims to explore the uniformity of the amplitude of ultrasonic vibration that was used during the printing process. The uniformity of vibration affected the improvement of the mechanical properties of the 3D printed part. If there is a bad uniformity of ultrasonic vibration, it will influence and increase the variation of the tensile test result. An open-source FDM printer attached with the piezoelectric transducer in various locations of the printer platform was set up. Five different positions and numbers of piezoelectric transducer were set up in order to determine the best position and number of the piezoelectric transducer for transmitting the vibration uniformly to the printing platform. A laser scanning vibrometer was used to determine the amplitude of ultrasonic vibration that transmitted over the printing platform of an open-source FDM 3D printer. From the results, it shows that with two piezoelectric transducers at “Position 4” improved the uniformity of ultrasonic vibration as it had the lowest standard deviation. The test also revealed that the ultrasonic vibration effect uniformly on the 3D printed specimens. In addition, it also reduces the variation and provide better tensile test results of the printed specimens


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 164
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Polylactic acid (PLA) belongs to the few thermoplastic polymers that are derived from renewable resources such as corn starch or sugar cane. PLA is often used in 3D printing by fused deposition modeling (FDM) as it is relatively easy to print, does not show warping and can be printed without a closed building chamber. On the other hand, PLA has interesting mechanical properties which are influenced by the printing parameters and geometries. Here we present shape-memory properties of PLA cubes with different infill patterns and percentages, extending the research reported before in a conference paper. We investigate the material response under defined quasi-static load as well as the possibility to restore the original 3D printed shape. The quasi-static flexural properties are linked to the porosity and the infill structure of the samples under investigation as well as to the numbers of closed top layers, examined optically and by simulations. Our results underline the importance of designing the infill patterns carefully to develop samples with desired mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Nanang Ali Sutisna ◽  
Rakha Amrillah Fattah

The method of producing items through synchronously depositing material level by level, based on 3D digital models, is named Additive Manufacturing (AM) or 3D-printing. Amongs many AM methods, the Fused Deposition Modeling (FDM) technique along with PLA (Polylactic acid) material is commonly used in additive manufacturing. Until now, the mechanical properties of the AM components could not be calculated or estimated until they've been assembled and checked. In this work, a novel approach is suggested as to how the extrusion process affects the mechanical properties of the printed component to obtain how the parts can be manufactured or printed to achieve improved mechanical properties. This methodology is based on an experimental procedure in which the combination of parameters to achieve an optimal from a manufacturing experiment and its value can be determined, the results obtained show the effect of the extrusion process affects the mechanical properties.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 655 ◽  
Author(s):  
Seong-Woo Hong ◽  
Ji-Young Yoon ◽  
Seong-Hwan Kim ◽  
Sun-Kon Lee ◽  
Yong-Rae Kim ◽  
...  

In this study, a soft structure with its stiffness tunable by an external field is proposed. The proposed soft beam structure consists of a skin structure with channels filled with a magnetorheological fluid (MRF). Two specimens of the soft structure are fabricated by three-dimensional printing and fused deposition modeling. In the fabrication, a nozzle is used to obtain channels in the skin of the thermoplastic polyurethane, while another nozzle is used to fill MRF in the channels. The specimens are tested by using a universal tensile machine to evaluate the relationships between the load and deflection under two different conditions, without and with permanent magnets. It is empirically shown that the stiffness of the proposed soft structure can be altered by activating the magnetic field.


2019 ◽  
Vol 821 ◽  
pp. 167-173 ◽  
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

In this paper, the mechanical properties of Polyethylene terephthalate-glycol (PETG) tensile test specimens have been investigated. The test pieces were prepared using fused deposition modelling (FDM) 3D printing technology. Three print settings were examined which are: raster direction angles, print orientations, and infill percentage and patterns in order to evaluate the anisotropy of objects when employing FDM print method. The variations in stress-strain curves, tensile strength values and elongation at break among the tested samples were studied and compared. Illustration for the broken specimens after the tensile test was accomplished to know how the test pieces printed with various parameters were fractured. A comparison with some previous results regarding the elongation at break has been carried out.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2792
Author(s):  
Mohammadreza Lalegani Dezaki ◽  
Mohd Khairol Anuar Mohd Ariffin

Fused deposition modeling (FDM) is commonly used to print different products with highly complex features. Process parameters for FDM are divided into controllable or uncontrollable parameters. The most critical ones are built orientation, layer thickness, infill pattern, infill density, and nozzle diameter. This study investigates the effects of combined infill patterns in 3D printed products. Five patterns (solid, honeycomb, wiggle, grid, and rectilinear) were combined in samples to analyze their effects on mechanical properties for tensile strength analysis. Polylactic acid (PLA) samples were printed in different build orientations through two directions: flat and on-edge. The limitation was that the software and machine could not combine the infill patterns. Thus, the patterns were designed and assembled in computer aided design (CAD) software. Finite element analysis (FEA) was used to determine the patterns’ features and results showed honeycomb and grid have the highest strength while their weights were lighter compared to solid. Moreover, 0° samples in both flat and on-edge direction had the strongest layer adhesion and the best quality. In contrast, perpendicular samples like 60° and 75° showed poor adhesion and were the weakest specimens in both flat and on-edge, respectively. In brief, by increasing the build orientation, the strength decreases in this study.


Sign in / Sign up

Export Citation Format

Share Document