Experimental Investigation on Cyclic Behavior of Reinforced Concrete Coupling Beams Under Quasi-static Loading

Author(s):  
Hasan Sesli ◽  
Metin Husem
2019 ◽  
Vol 35 (1) ◽  
pp. 361-381 ◽  
Author(s):  
Sang Whan Han ◽  
Hyeyoung Koh ◽  
Chang Seok Lee

Diagonally reinforced concrete coupling beams (DRCB) play an important role in coupled shear wall systems since these members dissipate most seismic input energy during earthquakes. For reliable seismic performance evaluation using nonlinear response history analyses, it is important to use an accurate analytical model for DRCBs. In this study, the Pinching4 model is used as a base model to simulate the cyclic behavior of DRCBs. To simulate the cyclic behavior of DRCBs using the Pinching4 model, the constituent modeling parameters for backbone curve, pinching, and cyclic deterioration in strength and stiffness should be computed. To determine the proper values of the constituent modeling parameters accurately and efficiently, this study proposes empirical equations for the modeling parameters using forward stepwise regression analyses. This study shows that the cyclic behavior of DRCBs is accurately simulated using the Pinching4 model with constituent parameters calculated from the proposed empirical equations.


2015 ◽  
Vol 27 (6) ◽  
pp. 661-668
Author(s):  
Sang-Whan Han ◽  
Kyoung-Hwan Yoo ◽  
Ki-Hak Lee ◽  
Myoung-Su Shin

2021 ◽  
Author(s):  
Sabahattin Aykaç ◽  
Eray Özbek ◽  
Ali Tugrul Tankut

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements


Sign in / Sign up

Export Citation Format

Share Document