Municipal solid waste incineration bottom ash: a competent raw material with new possibilities

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Sanjeev Kumar ◽  
Davinder Singh
Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2528
Author(s):  
Puput Risdanareni ◽  
Yury Villagran ◽  
Katrin Schollbach ◽  
Jianyun Wang ◽  
Nele De Belie

Production of artificial lightweight aggregate (LWA) from industrial by-products or abundant volcanic mud is a promising solution to prevent damaging the environment due to the mining of natural aggregate. However, improvements are still needed in order to control the high water absorption of LWA and strength reduction in resulting concrete or mortar. Hence in this research, fly ash, municipal solid waste incineration bottom ash (MSWI BA), and Sidoarjo volcanic mud (Lusi) were employed as a precursor and activated using NaOH 6 M and Na2SiO3 in producing LWA. The influence of the type of the precursors on the physical properties of resulting LWA was investigated. The effect of replacing natural fine aggregate with the resulting LWA on the compressive strength and volume density of mortar was also determined. Finer particles, a high amount of amorphous phase, and low loss on ignition (LOI) of the raw material improved the properties of resulting LWA. Mortar compressive strength was decreased by 6% when replacing 16% by volume of natural fine aggregate with fly ash based LWA. Compared to the expanded clay LWA, the properties of alternative LWAs in this study were slightly, but not significantly, inferior. Alternative LWA becomes attractive when considering that expanded clay LWA requires more energy during the sintering process.


2021 ◽  
Vol 121 ◽  
pp. 33-41
Author(s):  
Yanjun Hu ◽  
Lingqin Zhao ◽  
Yonghao Zhu ◽  
Bennong Zhang ◽  
Guixiang Hu ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 179
Author(s):  
Jad Bawab ◽  
Jamal Khatib ◽  
Said Kenai ◽  
Mohammed Sonebi

Waste management is a vital environmental issue in the world today. Municipal solid wastes (MSWs) are discarded in huge quantities on a daily basis and need to be well controlled. Incineration is a common method for reducing the volume of these wastes, yet it produces ashes that require further assessment. Municipal solid waste incineration bottom ash (MSWI-BA) is the bulk byproduct of the incineration process and has the potential to be used in the construction sector. This paper offers a review of the use of MSWI-BA as aggregates in cementitious materials. With the growing demand of aggregates in cementitious materials, MSWI-BA is considered for use as a partial or full alternative. Although the physical and chemical properties of MSWI-BA are different than those of natural aggregates (NA) in terms of water absorption, density, and fineness, they can be treated by various methods to ensure suitable quality for construction purposes. These treatment methods are classified into thermal treatment, solidification and stabilization, and separation processes, where this review focuses on the techniques that reduce deficiencies limiting the use of MSWI-BA as aggregates in different ways. When replacing NA in cementitious materials, MSWI-BA causes a decrease in workability, density, and strength. Moreover, they cause an increase in water absorption, air porosity, and drying shrinkage. In general, the practicality of using MSWI-BA in cementitious materials is mainly influenced by its treatment method and the replacement level, and it is concluded that further research, especially on durability, is required before MSWI-BA can be efficiently used in the production of sustainable cementitious materials.


2011 ◽  
Vol 474-476 ◽  
pp. 1099-1102
Author(s):  
Hai Ying Zhang ◽  
Yi Zheng ◽  
Hong Tao Hu ◽  
Jing Yu Qi

Bottom ash from municipal solid waste incineration (MSWI) has been previously suggested as an adsorbent for removing heavy metals from wastewater due to its high porosity and large surface area. In this study the adsorption characteristics of heavy metals were investigated using various particle sizes of MSWI bottom ash. The adsorption experiment was conducted using synthetic wastewater containing Cu, Zn, Pb and Cd as a function of residence time, initial pH, ash dosage and particle size, respectively. The adsorption rate increased with decreasing particle size and with increasing residence time. Through the above analysis, this work proved that bottom ash was effective in adsorbing the four heavy metals.


Sign in / Sign up

Export Citation Format

Share Document