scholarly journals Human Mobility Patterns at the Smallest Scales

2015 ◽  
Vol 18 (2) ◽  
pp. 417-428 ◽  
Author(s):  
Pedro G. Lind ◽  
Adriano Moreira

AbstractWe present a study on human mobility at small spatial scales. Differently from large scale mobility, recently studied through dollar-bill tracking and mobile phone data sets within one big country or continent, we report Brownian features of human mobility at smaller scales. In particular, the scaling exponents found at the smallest scales is typically close to one-half, differently from the larger values for the exponent characterizing mobility at larger scales. We carefully analyze 12-month data of the Eduroam database within the Portuguese university of Minho. A full procedure is introduced with the aim of properly characterizing the human mobility within the network of access points composing the wireless system of the university. In particular, measures of flux are introduced for estimating a distance between access points. This distance is typically non-Euclidean, since the spatial constraints at such small scales distort the continuum space on which human mobility occurs. Since two different exponents are found depending on the scale human motion takes place, we raise the question at which scale the transition from Brownian to non-Brownian motion takes place. In this context, we discuss how the numerical approach can be extended to larger scales, using the full Eduroam in Europe and in Asia, for uncovering the transition between both dynamical regimes.

2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Satish V. Ukkusuri ◽  
P. Suresh C. Rao

Abstract Recent disasters have shown the existence of large variance in recovery trajectories across cities that have experienced similar damage levels. Case studies of such events reveal the high complexity of the recovery process of cities, where inter-city dependencies and intra-city coupling of social and physical systems may affect the outcomes in unforeseen ways. Despite the large implications of understanding the recovery processes of cities after disasters for many domains including critical services, disaster management, and public health, little work have been performed to unravel this complexity. Rather, works are limited to analyzing and modeling cities as independent entities, and have largely neglected the effect that inter-city connectivity may have on the recovery of each city. Large scale mobility data (e.g. mobile phone data, social media data) have enabled us to observe human mobility patterns within and across cities with high spatial and temporal granularity. In this paper, we investigate how inter-city dependencies in both physical as well as social forms contribute to the recovery performances of cities after disasters, through a case study of the population recovery patterns of 78 Puerto Rican counties after Hurricane Maria using mobile phone location data. Various network metrics are used to quantify the types of inter-city dependencies that play an important role for effective post-disaster recovery. We find that inter-city social connectivity, which is measured by pre-disaster mobility patterns, is crucial for quicker recovery after Hurricane Maria. More specifically, counties that had more influx and outflux of people prior to the hurricane, were able to recover faster. Our findings highlight the importance of fostering the social connectivity between cities to prepare effectively for future disasters. This paper introduces a new perspective in the community resilience literature, where we take into account the inter-city dependencies in the recovery process rather than analyzing each community as independent entities.


Author(s):  
Fan Zhou ◽  
Qiang Gao ◽  
Goce Trajcevski ◽  
Kunpeng Zhang ◽  
Ting Zhong ◽  
...  

Trajectory-User Linking (TUL) is an essential task in Geo-tagged social media (GTSM) applications, enabling personalized Point of Interest (POI) recommendation and activity identification. Existing works on mining mobility patterns often model trajectories using Markov Chains (MC) or recurrent neural networks (RNN) -- either assuming independence between non-adjacent locations or following a shallow generation process. However, most of them ignore the fact that human trajectories are often sparse, high-dimensional and may contain embedded hierarchical structures. We tackle the TUL problem with a semi-supervised learning framework, called TULVAE (TUL via Variational AutoEncoder), which learns the human mobility in a neural generative architecture with stochastic latent variables that span hidden states in RNN. TULVAE alleviates the data sparsity problem by leveraging large-scale unlabeled data and represents the hierarchical and structural semantics of trajectories with high-dimensional latent variables. Our experiments demonstrate that TULVAE improves efficiency and linking performance in real GTSM datasets, in comparison to existing methods.


2014 ◽  
Vol 11 (100) ◽  
pp. 20140834 ◽  
Author(s):  
Xiao-Yong Yan ◽  
Chen Zhao ◽  
Ying Fan ◽  
Zengru Di ◽  
Wen-Xu Wang

Despite the long history of modelling human mobility, we continue to lack a highly accurate approach with low data requirements for predicting mobility patterns in cities. Here, we present a population-weighted opportunities model without any adjustable parameters to capture the underlying driving force accounting for human mobility patterns at the city scale. We use various mobility data collected from a number of cities with different characteristics to demonstrate the predictive power of our model. We find that insofar as the spatial distribution of population is available, our model offers universal prediction of mobility patterns in good agreement with real observations, including distance distribution, destination travel constraints and flux. By contrast, the models that succeed in modelling mobility patterns in countries are not applicable in cities, which suggests that there is a diversity of human mobility at different spatial scales. Our model has potential applications in many fields relevant to mobility behaviour in cities, without relying on previous mobility measurements.


2019 ◽  
Vol 9 (14) ◽  
pp. 2861 ◽  
Author(s):  
Alessandro Crivellari ◽  
Euro Beinat

The interest in human mobility analysis has increased with the rapid growth of positioning technology and motion tracking, leading to a variety of studies based on trajectory recordings. Mapping the routes that people commonly perform was revealed to be very useful for location-based service applications, where individual mobility behaviors can potentially disclose meaningful information about each customer and be fruitfully used for personalized recommendation systems. This paper tackles a novel trajectory labeling problem related to the context of user profiling in “smart” tourism, inferring the nationality of individual users on the basis of their motion trajectories. In particular, we use large-scale motion traces of short-term foreign visitors as a way of detecting the nationality of individuals. This task is not trivial, relying on the hypothesis that foreign tourists of different nationalities may not only visit different locations, but also move in a different way between the same locations. The problem is defined as a multinomial classification with a few tens of classes (nationalities) and sparse location-based trajectory data. We hereby propose a machine learning-based methodology, consisting of a long short-term memory (LSTM) neural network trained on vector representations of locations, in order to capture the underlying semantics of user mobility patterns. Experiments conducted on a real-world big dataset demonstrate that our method achieves considerably higher performances than baseline and traditional approaches.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Kota Tsubouchi ◽  
Naoya Fujiwara ◽  
Takayuki Wada ◽  
Yoshihide Sekimoto ◽  
...  

Abstract While large scale mobility data has become a popular tool to monitor the mobility patterns during the COVID-19 pandemic, the impacts of non-compulsory measures in Tokyo, Japan on human mobility patterns has been under-studied. Here, we analyze the temporal changes in human mobility behavior, social contact rates, and their correlations with the transmissibility of COVID-19, using mobility data collected from more than 200K anonymized mobile phone users in Tokyo. The analysis concludes that by April 15th (1 week into state of emergency), human mobility behavior decreased by around 50%, resulting in a 70% reduction of social contacts in Tokyo, showing the strong relationships with non-compulsory measures. Furthermore, the reduction in data-driven human mobility metrics showed correlation with the decrease in estimated effective reproduction number of COVID-19 in Tokyo. Such empirical insights could inform policy makers on deciding sufficient levels of mobility reduction to contain the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hui Xiong ◽  
Kaiqiang Xie ◽  
Lu Ma ◽  
Feng Yuan ◽  
Rui Shen

Understanding human mobility patterns is of great importance for a wide range of applications from social networks to transportation planning. Toward this end, the spatial-temporal information of a large-scale dataset of taxi trips was collected via GPS, from March 10 to 23, 2014, in Beijing. The data contain trips generated by a great portion of taxi vehicles citywide. We revealed that the geographic displacement of those trips follows the power law distribution and the corresponding travel time follows a mixture of the exponential and power law distribution. To identify human mobility patterns, a topic model with the latent Dirichlet allocation (LDA) algorithm was proposed to infer the sixty-five key topics. By measuring the variation of trip displacement over time, we find that the travel distance in the morning rush hour is much shorter than that in the other time. As for daily patterns, it shows that taxi mobility presents weekly regularity both on weekdays and on weekends. Among different days in the same week, mobility patterns on Tuesday and Wednesday are quite similar. By quantifying the trip distance along time, we find that Topic 44 exhibits dominant patterns, which means distance less than 10 km is predominant no matter what time in a day. The findings could be references for travelers to arrange trips and policymakers to formulate sound traffic management policies.


2020 ◽  
Vol 6 ◽  
pp. e276 ◽  
Author(s):  
James R. Watson ◽  
Zach Gelbaum ◽  
Mathew Titus ◽  
Grant Zoch ◽  
David Wrathall

When, where and how people move is a fundamental part of how human societies organize around every-day needs as well as how people adapt to risks, such as economic scarcity or instability, and natural disasters. Our ability to characterize and predict the diversity of human mobility patterns has been greatly expanded by the availability of Call Detail Records (CDR) from mobile phone cellular networks. The size and richness of these datasets is at the same time a blessing and a curse: while there is great opportunity to extract useful information from these datasets, it remains a challenge to do so in a meaningful way. In particular, human mobility is multiscale, meaning a diversity of patterns of mobility occur simultaneously, which vary according to timing, magnitude and spatial extent. To identify and characterize the main spatio-temporal scales and patterns of human mobility we examined CDR data from the Orange mobile network in Senegal using a new form of spectral graph wavelets, an approach from manifold learning. This unsupervised analysis reduces the dimensionality of the data to reveal seasonal changes in human mobility, as well as mobility patterns associated with large-scale but short-term religious events. The novel insight into human mobility patterns afforded by manifold learning methods like spectral graph wavelets have clear applications for urban planning, infrastructure design as well as hazard risk management, especially as climate change alters the biophysical landscape on which people work and live, leading to new patterns of human migration around the world.


Author(s):  
Miguel Ribeiro ◽  
Nuno Nunes ◽  
Valentina Nisi ◽  
Johannes Schöning

Abstract In this paper, we present a systematic analysis of large-scale human mobility patterns obtained from a passive Wi-Fi tracking system, deployed across different location typologies. We have deployed a system to cover urban areas served by public transportation systems as well as very isolated and rural areas. Over 4 years, we collected 572 million data points from a total of 82 routers covering an area of 2.8 km2. In this paper we provide a systematic analysis of the data and discuss how our low-cost approach can be used to help communities and policymakers to make decisions to improve people’s mobility at high temporal and spatial resolution by inferring presence characteristics against several sources of ground truth. Also, we present an automatic classification technique that can identify location types based on collected data.


Sign in / Sign up

Export Citation Format

Share Document