Root-lesion nematodes in cereal fields: importance, distribution, identification, and management strategies

2018 ◽  
Vol 126 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Fouad Mokrini ◽  
Nicole Viaene ◽  
Lieven Waeyenberge ◽  
Abdelfattah A. Dababat ◽  
Maurice Moens
2018 ◽  
Vol 2 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Emma L. Tilston ◽  
Greg Deakin ◽  
Julie Bennett ◽  
Tom Passey ◽  
Nicola Harrison ◽  
...  

Continuous planting of apple in the same area leads to reduced growth vigor and subsequent crop losses, i.e., apple replant disease (ARD) syndrome. Several soilborne plant pathogens including Pythium, Fusarium, and Cylindrocarpon spp. are often proposed as candidate causal organisms for ARD. In addition, the presence of root lesion nematodes and the lack of beneficial groups of bacteria are believed to exacerbate or ameliorate the effects of the plant pathogens. The importance of these proposed causal and auxiliary agents seems to vary with site. Using a spatially explicit sampling strategy to minimize spatial variability we collected rhizosphere soil samples from neighboring pairs of healthy and putative ARD trees to identify candidate causal organisms of ARD. Amplicon-based metabarcoding was used to obtain community-level profiles of the bacteria, fungi, oomycetes and nematodes in the soil samples. Total bacterial and fungal biomass in each sample was estimated using qPCR to adjust the raw sequence reads data. The results suggested that ARD is not ameliorated by enhanced rhizosphere biodiversity per se. We identified 25 bacterial operational taxonomic units (OTUs), 16 fungal OTUs, 18 oomycetes OTUs, and one nematode OTU group with differential abundance between healthy and putative ARD trees. All 25 bacterial OTUs had lower abundance in samples from ARD symptomatic trees than from healthy trees. One AMF OTU had lower abundance in samples from ARD symptomatic trees. None of 13 fungal OTUs that had higher abundance in samples from ARD symptomatic trees is a known plant pathogen; but at least one Pythium OTU (probably Pythium intermedium) is a candidate for causing ARD. The abundance of one nematode OTU was much higher in samples from ARD symptomatic trees than in healthy trees. The results suggest that, apart from the use of broad spectrum fumigants, the complexity of ARD may necessitate the combined use of multiple management strategies with the success of these measures expected to vary considerably between sites because of the varying importance of ARD causal agents among sites.


HortScience ◽  
1990 ◽  
Vol 25 (3) ◽  
pp. 318-320
Author(s):  
J.L. Townshend

The effects of temperature and root-lesion nematodes [Pratylenchus penetrans (Cobb)] on the growth of newly germinated `Bartlett' pear seedlings (Pyrus communis L.) were examined. At five temperatures from 10 to 30C, P. penetrans (five per gram of soil) did not purple the leaves. After 8 weeks, leaf number, trunk height, and top and root weights were reduced only at 25C. The number of P. penetrans in the roots were greatest at 15 and 20C. At 20C, P. penetrans (16 per gram of soil) caused the leaves of seedlings to turn purple, and, by 6 weeks after treatment, the nematodes had reduced leaf production, trunk elongation, and top and root growth.


2002 ◽  
Vol 31 (4) ◽  
pp. 363 ◽  
Author(s):  
I. Van den Bergh ◽  
D. T. M. Nguyet ◽  
N. T. Tuyet ◽  
H. H. Nhi ◽  
D. De Waele

2022 ◽  
Vol 96 ◽  
Author(s):  
Y.H. Xia ◽  
J. Li ◽  
M.R. Sun ◽  
B. Lei ◽  
H.L. Li ◽  
...  

Abstract Root-lesion nematodes (Pratylenchus spp.) are a group of economically important pathogens that have caused serious economic losses in many crops. In 2019, root-lesion nematodes were recovered from tomato (Solanum lycopersicum) root samples collected from Sichuan Province, People's Republic of China (PRC). Extracted nematodes were disinfected, and one individual female was cultured on a carrot disc for propagation at 25 °C by parthenogenesis and designated the SC isolate. Afterwards, the isolate was identified on the basis of morphometric and molecular markers. Both morphometric characters and molecular analysis of the internal transcribed spacer region gene (ITS) of ribosomal DNA, the D2-D3 expansion region of the 28S rDNA gene and the mitochondrial cytochrome oxidase I (mtDNA-COI) gene revealed that the species of root-lesion nematode was Pratylenchus scribneri. The Bayesian tree inferred from the ITS rDNA, 28S rDNA and mtDNA-COI gene sequences also showed that this isolate formed a highly supported clade with other P. scribneri isolates. The pathogenicity of the root-lesion nematode SC isolate on tomato was assessed, showing that tomato was a suitable host for P. scribneri. To the best of our knowledge, this is the first report of P. scribneri on tomato in Sichuan Province, PRC. These are also the first molecular data obtained from P. scribneri on tomato in the PRC, and the pathogenicity of P. scribneri to tomato was studied for the first time. This study provides scientific data for the detection, identification and control of tomato root-lesion nematode disease.


2021 ◽  
pp. 362-367
Author(s):  
Ann E. MacGuidwin

Abstract Pratylenchus penetrans is a cosmopolitan species reported from 69 countries representing every continent except Antarctica. P. penetrans has a wide host range including potato and is found throughout the potato growing region of the northern USA. Most potato fields are infested with the fungus Verticillium dahliae as well as root lesion nematodes, and a disease interaction between the two has been demonstrated for multiple soil types, potato cultivars and production regions. The significance of the interaction between P. penetrans and V. dahliae is that it is synergistic rather than additive. This chapter discusses the economic importance, distribution, symptoms of damage, biology and life cycle, recommended integrated nematode management and management optimization of P. penetrans. Future research requirements are also mentioned.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 361 ◽  
Author(s):  
Eva Edin ◽  
Mehreen Gulsher ◽  
Mikael Andersson Franko ◽  
Jan-Eric Englund ◽  
Adam Flöhr ◽  
...  

Soil microorganisms and soil fauna may have a large impact on the tuber yield of potato crops. The interaction between root-lesion nematodes and the pathogenic fungus Rhizoctonia solani Kühn was studied on potato plants grown in pots under controlled conditions. In two similar experiments, different combinations of nematodes and fungal mycelium were added to the pots at three occasions; at planting, after 14 days, and after 28 days. The nematodes reduced root biomass and the combination of nematodes and R. solani resulted in reduced tuber yield in both experiments, but the interaction was not synergistic. In contrast, the number of stem canker lesions decreased in the presence of nematodes compared to treatments with R. solani only. The time of inoculation influenced the severity of both fungal and nematode damage. The nematode damage on tubers was less severe if the nematodes were added at 28 days, while the number of severe stem canker lesions increased if the fungus was added at 28 days. However, the time of nematode inoculation did not affect the incidence of fungal damage, hence the nematodes did not assist R. solani to infect the plant. Our results highlight the underestimated importance of root-lesion nematodes, not resulting in obvious above ground symptoms or misshaped tubers yet affecting the performance of other pathogens.


1987 ◽  
Vol 36 (3) ◽  
pp. 333-338 ◽  
Author(s):  
J. KIMPINSKI ◽  
H. W. JOHNSTON ◽  
R. A. MARTIN

Sign in / Sign up

Export Citation Format

Share Document