Assessing the spatio-temporal uncertainties in future meteorological droughts from CMIP5 models, emission scenarios and bias corrections
AbstractDrought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modelling and forcing data. Using the Standardized Precipitation Index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance–based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, 3 Representative Concentration Pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and 2 bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM (>60%), followed by BC (<35%) and RCP (<16%). Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in NH than Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in NH than SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr timescales, the contributions for 3 uncertainty sources show larger variability in S than Df projections, especially in SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.