scholarly journals Analysis of meteorological and agricultural droughts in Serbia

2014 ◽  
Vol 12 (3) ◽  
pp. 253-264 ◽  
Author(s):  
Mladen Milanovic ◽  
Milan Gocic ◽  
Slavisa Trajkovic

Drought represents a combined heat-precipitation extreme and has become an increasingly frequent phenomenon in recent years. In order to access the entire analysis of drought, it is necessary to include the analysis of several types of drought. In this paper, impacts of meteorological and agricultural drought were analyzed across the Standardized Precipitation Index (SPI) and Agricultural Rainfall Index (ARI) on the territory of Serbia for the period from 1980 to 2010. For both types of drought, year 2000 is notable as the year when most of the observed stations had the highest drought intensity. It was found that meteorological drought for year 2000 has a higher intensity in the central and southeastern parts of the country, as well as in the north. Of all the stations, the highest intensity of meteorological drought was observed at Loznica station in 1989. Agricultural drought in 2000 had the lowest intensity in western Serbia.

2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2021 ◽  
Vol 13 (23) ◽  
pp. 4730
Author(s):  
Malak Henchiri ◽  
Tertsea Igbawua ◽  
Tehseen Javed ◽  
Yun Bai ◽  
Sha Zhang ◽  
...  

Droughts are one of the world’s most destructive natural disasters. In large regions of Africa, droughts can have strong environmental and socioeconomic impacts. Understanding the mechanism that drives drought and predicting its variability is important for enhancing early warning and disaster risk management. Taking North and West Africa as the study area, this study adopted multi-source data and various statistical analysis methods, such as the joint probability density function (JPDF), to study the meteorological drought and return years across a long term (1982–2018). The standardized precipitation index (SPI) was used to evaluate the large-scale spatiotemporal drought characteristics at 1–12-month timescales. The intensity, severity, and duration of drought in the study area were evaluated using SPI–12. At the same time, the JPDF was used to determine the return year and identify the intensity, duration, and severity of drought. The Mann-Kendall method was used to test the trend of SPI and annual precipitation at 1–12-month timescales. The pattern of drought occurrence and its correlation with climate factors were analyzed. The results showed that the drought magnitude (DM) of the study area was the highest in 2008–2010, 2000–2003, and 1984–1987, with the values of 5.361, 2.792, and 2.187, respectively, and the drought lasting for three years in each of the three periods. At the same time, the lowest DM was found in 1997–1998, 1993–1994, and 1991–1992, with DM values of 0.113, 0.658, and 0.727, respectively, with a duration of one year each time. It was confirmed that the probability of return to drought was higher when the duration of drought was shorter, with short droughts occurring more regularly, but not all severe droughts hit after longer time intervals. Beyond this, we discovered a direct connection between drought and the North Atlantic Oscillation Index (NAOI) over Morocco, Algeria, and the sub-Saharan countries, and some slight indications that drought is linked with the Southern Oscillation Index (SOI) over Guinea, Ghana, Sierra Leone, Mali, Cote d’Ivoire, Burkina Faso, Niger, and Nigeria.


2021 ◽  
Vol 5 (2) ◽  
pp. 45-55
Author(s):  
Elhoucein Layati ◽  
Abdellah Ouigmane ◽  
Abdelghani Qadem ◽  
Mohamed El Ghachi

The present study is focused on analysis of rainfall in the Oued El-Abid watershed, which is characterized by an important potential in water supply of the Bin El Ouidane dam and the recharging groundwater of the plains downstream. The aim of the present research is to characterize the meteorological drought in the Oued El-Abid watershed, located in the Beni Mellal-Khenifra region (Central High Atlas, Morocco). The study focused on the analysis of the meteorological drought detection indices such as the deviation from the mean (DM), the rainfall index (RI) and the standardized precipitation index (SPI) based on annual precipitation for the three stations (Tilouguit, Ait Ouchen and Tizi N'Isli) generally experienced alternating periods of surplus and deficit. The results of these indices allowed us to determine the most remarkable and common drought years are: 1981, 1983, 1990, 1998, 2001, 2005, 2017 and 2019. This study is helpful for water resource managers to make decisions and develop tools for adaptation and mitigation of climate change impacts.


Author(s):  
Parwati ◽  
Miao Jungang ◽  
Orbita Roswintiarti

In this research, several meteorological and agricultural drought indices based on remote sensing data are built for drought monitoring over paddy area in Indramayu District, West Java, Indonesia. The meteorological drought index of Standardized Precipitation Index (SPI) is developed from monthly Outgoing Long Wave Radiation (OLR) data from 1980 to 2005. The SPI represents the deficient of precipitation. Meanwhile, the agricultural drought of Vegetation Health Index (VHI) was developed from daily Moderate-resolution ImagingSpectroradiometer (MODIS) data during dry season (May-August) 2003-2006. The VHI was designed to monitoring vegetation health, soil moisture, and thermal conditions. The result shows that the agricultural drought occurate in Indramayu District, especially in the northern and southern part during the dry season in 2003 and 2004. It is found that there is a strong correlation between VHI and soil moisture measured in the field (r=0.84). Key words:Agricultural drought, Meteorological drought, Standardized Precipitation Index, Temperature Condition Index, Vegetation Condition Index.


2021 ◽  
Author(s):  
Qianfeng Wang ◽  
Rongrong Zhang ◽  
Yanping Qu ◽  
Jingyu Zeng ◽  
Xiaoping Wu ◽  
...  

Abstract. With the increasing shortage of water resources, drought has become one of the hot issues in the world. The standardized precipitation index (SPI) is one of the widely used drought assessment indicators because of its simple and effective calculation method, but it can only assess drought events more than one month. We developed a new multi-scale daily SPI dataset to make up for the shortcomings of the commonly used SPI and meet the needs of drought types at different time scales. Taking three typical stations in Henan, Yunnan and Fujian Province as examples, the drought events identified by SPI with different scales were consistent with the historical drought events recorded. Meanwhile, we took the 3-month scale SPI of soil and agricultural drought as an example, and analyzed the characteristics of drought events in 484 stations in Chinese mainland. The results showed that most of the drought events the mainland China did not increase significantly, and some parts of the northwestern Xinjiang and Northeast China showed signs of gradual relief. In short, our daily SPI data set is freely available to the public on the website https://doi.org/10.6084/m9.figshare.14135144, and can effectively capture drought events of different scales. It can also meet the needs of drought research in different fields such as meteorology, hydrology, agriculture, social economy, etc.


2016 ◽  
Vol 31 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Sabrine Jemai ◽  
Manel Ellouze ◽  
Belgacem Agoubi ◽  
Habib Abida

AbstractChronological series of monthly and annual precipitation data recorded in Gabes Watershed, south-eastern Tunisia, were analyzed. The study is based on the standardized precipitation index (SPI) values, computed for 10 rainfall stations over the period 1987–2012, which corresponds to an observatory period of 25 hydrologic years (from September to August). The results obtained show a great variability in SPI values. The historical evolution of the SPI made it possible to define the periods of excess and deficit, corresponding to wet and dry periods respectively. The wet years were found to be 1989–1990, 1995–1996 and 2006–2007 while the dry years were 1987–1988, 1996–1997, 2000–2001, 2001–2002, 2007–2008, 2008–2009 and 2009–2010. This clearly shows alternating wet and dry periods, but with drought episodes taking prevalence over rainy fronts throughout the study period. Indeed, a high tendency towards a drop in precipitation and important sequences of drought were observed. Spatial variability of drought throughout Gabes Watershed was examined by geostatistical analysis of SPI, as drought and rainfall distribution vary with latitude, longitude, topography and proximity to the Mediterranean Sea. The results obtained showed that, compared to coastal and southern areas, drought was observed to be more important in the West and the North of Gabes Watershed. The SPI showed that moderate droughts are generally more frequent than severe or extreme droughts in most of the Watershed.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Md. Anarul Haque Mondol ◽  
Iffat Ara ◽  
Subash Chandra Das

Natural disasters are a major concern in Bangladesh, particularly drought which is one of the most common disaster in Bangladesh. Drought needs to be explained spatially to understand its spatiotemporal variations in different areas. In this paper, the meteorological drought has been shown by using the Standardized Precipitation Index (SPI) method and illustrated through the Inverse Distance Weighted (IDW) method across Bangladesh. We used rainfall data of 30 meteorological stations in Bangladesh during the study period of 1981–2010. The results indicate that drought has been fluctuating and it has become a recurrent phenomenon during the study period. The SPI depicted the drought conditions that plunged dramatically in 1981, 1982, 1985, 1987, 1989, 1992, 1994, and 1996 and then gradually improved in 2004, 2006, and 2009 in the country. The present study demonstrated that drought occurred in Bangladesh on an average of 2.5 years. Drought was more prominent in the northern, south-western, and eastern regions in Bangladesh compared to the rest of the areas of the country. The outcomes of the present study will help in during disaster management strategies, particularly drought, by initiating effective plans and adaptation remedies in different areas of Bangladesh.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Abebe Senamaw ◽  
Solomon Addisu ◽  
K. V. Suryabhagavan

Abstract Background Geographic Information System (GIS) and Remote Sensing play an important role for near real time monitoring of drought condition over large areas. The aim of this study was to assess spatial and temporal variation of agricultural and meteorological drought using temporal image of eMODIS NDVI based vegetation condition index (VCI) and standard precipitation index (SPI) from the year 2000 to 2016. To validate the strength of drought indices correlation analysis was made between VCI and crop yield anomaly as well as standardized precipitation index (SPI) and crop yield anomaly. Results The results revealed that the year 2009 and 2015 was drought years while the 2001 and 2007 were wet years. There was also a good correlation between NDVI and rainfall (r = 0.71), VCI and crop yield anomaly (0.72), SPI and crop yield anomaly (0.74). Frequency of metrological and agricultural drought was compiled by using historical drought intensity map. The result shows that there was complex and local scale variation in frequency of drought events in the study period. There was also no year without drought in many parts of the study area. Combined drought risk map also showed that 8%, 56% and 35% of the study area were vulnerable to very severe, severe and moderate drought condition respectively. Conclusions In conclusion, the study area is highly vulnerable to agricultural and meteorological drought. There was also no year without drought in many parts of the study area. Thus besides mapping drought vulnerable areas, integrating socio-economic data for better understand other vulnerable factors were recommended.


Sign in / Sign up

Export Citation Format

Share Document