scholarly journals One-flow synthesis of tetrahydrocannabinol and cannabidiol using homo- and heterogeneous Lewis acids

Author(s):  
Victor R. L. J. Bloemendal ◽  
Bram Spierenburg ◽  
Thomas J. Boltje ◽  
Jan C. M. van Hest ◽  
Floris P. J. T. Rutjes

AbstractContinuous flow chemistry holds great potential for the production of biologically relevant molecules. Herein, we present an approach for the continuous synthesis of cannabidiol and tetrahydrocannabinol in a one-flow system. The designed route consists of a reaction cascade involving Friedel-Crafts alkylation, subsequent ring opening and cyclisation in up to 45% yield. The reactions were successfully performed using both hetero- and homogeneous Lewis acids in continuous flow and provide yields that are similar to comparable batch processes. Graphical abstract

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6992
Author(s):  
Mara Di Filippo ◽  
Marcus Baumann

Continuous flow chemistry is by now an established and valued synthesis technology regularly exploited in academic and industrial laboratories to bring about the improved preparation of a variety of molecular structures. Benefits such as better heat and mass transfer, improved process control and safety, a small equipment footprint, as well as the ability to integrate in-line analysis and purification tools into telescoped sequences are often cited when comparing flow to analogous batch processes. In this short review, the latest developments regarding the exploitation of continuous flow protocols towards the synthesis of anticancer drugs are evaluated. Our efforts focus predominately on the period of 2016–2021 and highlight key case studies where either the final active pharmaceutical ingredient (API) or its building blocks were produced continuously. It is hoped that this manuscript will serve as a useful synopsis showcasing the impact of continuous flow chemistry towards the generation of important anticancer drugs.


Author(s):  
Matthew R. Penny ◽  
Natalie Tsui ◽  
Stephen T. Hilton

Abstract Continuous flow chemistry is undergoing rapid growth and adoption within the pharmaceutical industry due to its ability to rapidly translate chemical discoveries from medicinal chemistry laboratories into process laboratories. Its growing significance means that it is imperative that flow chemistry is taught and experienced by both undergraduate and postgraduate synthetic chemists. However, whilst flow chemistry has been incorporated by industry, there remains a distinct lack of practical training and knowledge at both undergraduate and postgraduate levels. A key challenge associated with its implementation is the high cost (>$25,000) of the system’s themselves, which is far beyond the financial reach of most universities and research groups, meaning that this key technology remains open to only a few groups and that its associated training remains a theoretical rather than a practical subject. In order to increase access to flow chemistry, we sought to design and develop a small-footprint, low-cost and portable continuous flow system that could be used to teach flow chemistry, but that could also be used by research groups looking to transition to continuous flow chemistry. A key element of its utility focusses on its 3D printed nature, as low-cost reactors could be readily incorporated and modified to suit differing needs and educational requirements. In this paper, we demonstrate the system’s flexibility using reactors and mixing chips designed and 3D printed by an undergraduate project student (N.T.) and show how the flexibility of the system allows the investigation of differing flow paths on the same continuous flow system in parallel.


2017 ◽  
Vol 46 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Chunhua Gong ◽  
Junyong Zhang ◽  
Xianghua Zeng ◽  
Jingli Xie

By using an Asia flow synthesis system (chip reactor), a new coordination polymer [Co2L4(H2O)2]·CH3CN·H2O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield, demonstrating the uniqueness of flow-type reactions.


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Flow performed in microreactors offers up a number of benefits allowing reactions to be performed in a more convenient and safer manner, and even allow electrochemical reactions to take place without a supporting electrolyte due to a very short interelectrode distance. By the comparison of electrochemical oxidations in batch and flow we have found that continuous flow is able to outperform its batch counterpart, producing a good yield (71%) and a better enantiomeric excess (64%) than batch with a 98% conversion. We have, therefore, provided evidence that continuous flow chemistry has the potential to act as a new enabling technology to replace some aspects of conventional batch processes. </p>


Author(s):  
Nicole Candice Neyt ◽  
Darren Lyall Riley

The adoption of flow technology for the manufacture of chemical entities, and in particular pharmaceuticals, has seen rapid growth over the past two decades with the technology now blurring the...


2017 ◽  
Vol 7 (3–4) ◽  
pp. 157-158 ◽  
Author(s):  
Daniel Blanco-Ania ◽  
Floris P. J. T. Rutjes

ChemInform ◽  
2014 ◽  
Vol 45 (44) ◽  
pp. no-no
Author(s):  
Jan Hartwig ◽  
Jan B. Metternich ◽  
Nikzad Nikbin ◽  
Andreas Kirschning ◽  
Steven V. Ley

Author(s):  
Cloudius Sagandira ◽  
Sinazo Nqeketo ◽  
Kanysile Mhlana ◽  
Thembela Sonti ◽  
Paul Watts ◽  
...  

Continuous flow chemistry has opened a new paradigm in both the laboratory and pharmaceutical industry. This review details the recently reported literature on continuous multistep telescoped synthesis of active pharmaceutical...


Author(s):  
Jessica Orrego‐Hernández ◽  
Helen Hölzel ◽  
Maria Quant ◽  
Zhihang Wang ◽  
Kasper Moth‐Poulsen

Sign in / Sign up

Export Citation Format

Share Document