Fundamental period of RC buildings with infill walls in Nepal

Author(s):  
Bibek Panthi ◽  
Peshal Dahal ◽  
Prabesh Shrestha ◽  
Kamal Bahadur Thapa
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Panagiotis G. Asteris ◽  
Athanasios K. Tsaris ◽  
Liborio Cavaleri ◽  
Constantinos C. Repapis ◽  
Angeliki Papalou ◽  
...  

The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Massimiliano Ferraioli ◽  
Angelo Lavino

Despite extensive research studies, the seismic response of infilled reinforced concrete buildings remains an open problem due to both the complexity of the interaction between the infill and the frame and the large number of parameters involved. Thus, guidelines for both modelling and analysis are still lacking and the infill walls are normally treated as nonstructural components in seismic codes. However, it may be not conservative to neglect the influence of infills. In fact, the infill masonry walls may significantly affect the stiffness, strength, and energy dissipation capacity of RC buildings, even when they are regularly distributed. Recognizing this influence and its importance on the vulnerability of infilled frames, Eurocode 8 requires amplifying seismic action effects due to infills. In this paper, the effectiveness of the Eurocode 8 design provisions for infill irregularity in plan and/or elevation was investigated. To this aim, different in-plan layouts of infill walls were selected as marginal cases for which Eurocode 8 does not require amplification of the action effects due to the presence of infills, or the additional measures to counteract these effects are not mandatory. The seismic vulnerability of the infilled RC buildings was evaluated using nonlinear static and nonlinear dynamic analyses. Both cracking and crushing of masonry and stiffness and strength degradation were considered in the analysis. The effect of the layout of the masonry infills on the seismic response in terms of resistance and displacement was evaluated. Results show that in one of the case studies here examined, it is not conservative to neglect the influence of infill panels. In fact, structural failure due to torsion and soft-storey effects may occur even in cases where Eurocode 8 does not require the amplification of the action effects. Finally, the total shear demand on columns may be underestimated, even in cases where the code provisions for infills irregularity are not mandatory, and the additional shear demand in the columns induced by the masonry infill is very low.


Author(s):  
Andrija Radovic

Determining the value of the fundamental period of vibrations of reinforced concrete structures is a complex task. In order to have certain data on the fundamental period of vibration in the earliest design stage, engineers use various approximate methods, which can quickly and simply, but still sufficiently accurate, provide an estimate of the required parameter.The paper presents the most frequently used empirical expressions describing the dependence of the fundamental period in the function of the number of storeys, or the height of the building. All of these expressions, with greater or lesser accuracy, give an estimate of the required value, as shown by a number of examples. A graphic representation of all expressions and their comparison with experimental and numerically derived values has been performed.


2019 ◽  
Vol 35 (4) ◽  
pp. 1763-1793 ◽  
Author(s):  
Carlos A. Arteta ◽  
Julian Carrillo ◽  
Jorge Archbold ◽  
Daniel Gaspar ◽  
Cesar Pajaro ◽  
...  

The response of mid-rise reinforced concrete (RC) buildings in Mexico City after the 2017 Puebla Earthquake is assessed through combined field and computational investigation. The Mw 7.1 earthquake damaged more than 500 buildings where most of them are classified as mid-rise RC frames with infill walls. A multinational team from Colombia, Mexico, and the United States was rapidly deployed within a week of the occurrence of the event to investigate the structural and nonstructural damage levels of over 60 RC buildings with 2–12 stories. The results of the study confirmed that older mid-rise structures with limited ductility capacity may have been shaken past their capacity. To elucidate the widespread damage in mid-rise RC framed structures, the post-earthquake reconnaissance effort is complemented with inelastic modeling and simulation of several representative RC framing systems with and without masonry infill walls. It was confirmed that the addition of non-isolated masonry infills significantly impacts the ductility capacity and increases the potential for a soft-story mechanism formation in RC frames originally analyzed and designed to be bare systems.


2013 ◽  
Vol 747 ◽  
pp. 273-276
Author(s):  
Ahmet Yakut ◽  
Ismail Ozan Demirel

Majority of buildings in Turkey and in most developing countries are made with reinforced concrete frames infilled with clay tile brick walls. Despite this, influence of these walls is not accounted for in design. Past earthquake observations have shown that the infill walls have great influence on performance of buildings. In this paper, influence of the brick infill walls on strength and stiffness of RC buildings are presented through analytical results obtained for some typical buildings. Comparison of results showed that stiffness of the walls and their capacity is greatly influenced by the infill walls. The change in the strength and stiffness has been based on ratio of the wall area to the total floor area with providing expressions to determine these.


Sign in / Sign up

Export Citation Format

Share Document