Optimization of the roll motion of box-shaped hull section with anti-rolling sloshing tanks and fins in beam waves

Author(s):  
Xin-wang Liu ◽  
Wei-wen Zhao ◽  
De-cheng Wan
Keyword(s):  
Author(s):  
Fengchen Wang ◽  
Yan Chen

This paper presents a novel mass-center-position (MCP) metric for vehicle rollover propensity detection. MCP is first determined by estimating the positions of the center of mass of one sprung mass and two unsprung masses with two switchable roll motion models, before and after tire lift-off. The roll motion information without saturation can then be provided through MCP continuously. Moreover, to detect completed rollover statues for both tripped and untripped rollovers, the criteria are derived from d’Alembert principle and moment balance conditions based on MCP. In addition to tire lift-off, three new rollover statues, rollover threshold, rollover occurrence, and vehicle jumping into air can be all identified by the proposed criteria. Compared with an existing rollover index, lateral load transfer ratio, the fishhook maneuver simulation results in CarSim® for an E-class SUV show that MCP metric can successfully predict the vehicle impending rollover without saturation for untripped rollovers. Tripped rollovers caused by a triangle road bump are also successfully detected in the simulation. Thus, MCP metric can be successfully applied for rollover propensity prediction.


Author(s):  
Bo Min Kim ◽  
Dae Sik Ko ◽  
Jong Min Kim

In general, vehicle uses torsional stiffness of a stabilizer bar to control the roll motion. But this stabilizer bar system has problems with degradation for ride comfort and vehicle’s NVH characteristic due to the suspension parasitic stiffness caused by deformation and wear of the stabilizer bar rubber bush. In addition, it is difficult to control the vehicle’s roll motion effectively in case of excessive vehicle roll behavior when it is designed to satisfy ride comfort simultaneously because of the stabilizer bar’s linear roll stiffness characteristic. In this paper, the new anti-roll system is suggested which consists of connecting link, push rod, laminated leaf spring, and rotational bearing. This new concept anti-roll system can minimize the suspension parasitic stiffness by using rotational bearing structure and give the vehicle non-linear roll stiffness by using the laminated leaf spring structure which are composed of main spring and auxiliary one. Reduction of suspension parasitic stiffness and realization of non-linear roll stiffness in this anti-roll system were verified with both vehicle dynamic simulation and vehicle test. Also, this study includes improvement of the system operating efficiency through material change and shape optimization of the leaf spring, and optimal configuration of the force transfer system.


2003 ◽  
Author(s):  
Kim Klaka ◽  
◽  
John Penrose ◽  
Richard Horsley ◽  
Martin Renilson ◽  
...  
Keyword(s):  

Author(s):  
Walter L. Kuehnlein ◽  
K.-E. Brink

At present common stability criteria are based on practical knowledge gained from the operation of ships. Therewith the assessment of ship safety against capsizing is partly determined by long-term statistics of accidents. Regulations like the IMO-Resolution A 167 do not rate the typical seakeeping characteristics of different hull form geometries. Therefore strictly speaking, these criteria are just applicable for ships of similar types as included in statistics. Rapid development in ship design calls for the determination of ship and cargo safety in regard of extreme roll motions or capsizing during early design stage. Within the ROLL-S project, which was founded by the German Federal Ministry of Education and Research, dynamic stability tests with a box shaped Container Ship and a RO-RO vessel have been performed. The performance of model tests, which are intended to serve for the validation of numerical simulation methods, put high demands on test and data acquisition techniques. The data of the waves encountered, course and position, as well as the response of the model had to be determined by model tests in order to use these data for the validation of numerical ship motion simulations. During the tests extreme roll motions of the two considered vessels could be observed in head seas and in following seas. Besides critical motion characteristics in following seas, like broaching, parametric induced roll motion effects were investigated in head sea condition. Remark: This paper should be read in conjunction with paper OMAE 2002-28297 which describes generation and transformation of the used waves.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0206476 ◽  
Author(s):  
Binglei Guan ◽  
Wei Yang ◽  
Zhibin Wang ◽  
Yinggan Tang

Author(s):  
G Virzì Mariotti ◽  
G Ficarra

The research reported in this paper aims to simulate the road-holding of a virtual vehicle using multi-body simulation to estimate both the contact forces between the tyre and ground and the roll motion when cornering. Furthermore, the effect of the characteristic angles on the variation in the forces of the tyre in contact with the ground is studied to determine optimal values for these angles. Emphasis is placed on an average-class vehicle, of which both the external dimensions and mass are chosen appropriately, with a McPherson suspension mounted on both the front and the rear. The characteristic values of the camber and toe-in angles, in both the front and the rear, are optimized for motion in the curve under constant traction. The results of numerical simulation are compared with results from the theory of stability in the curve (given the vertical configuration of the vehicle).


Sign in / Sign up

Export Citation Format

Share Document