scholarly journals Industry news: the additive manufacturing of nerve conduits for the treatment of peripheral nerve injury

Author(s):  
Ying Han ◽  
Jun Yin
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shimon Rochkind ◽  
Zvi Nevo

Objective. Guiding Regeneration Gel (GRG) was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated.Background. Many severe peripheral nerve injuries can only be treated through surgical reconstructive procedures. Such procedures are challenging, since functional recovery is slow and can be unsatisfactory. One of the most promising solutions already in clinical practice is synthetic nerve conduits connecting the ends of damaged nerve supporting nerve regeneration. However, this solution still does not enable recovery of massive nerve loss defect.The proposed technologyis a biocompatible and biodegradable gel enhancing axonal growth and nerve regeneration. It is composed of a complex of substances comprising transparent, highly viscous gel resembling the extracellular matrix that is almost impermeable to liquids and gasses, flexible, elastic, malleable, and adaptable to various shapes and formats.Preclinical studyon rat model of peripheral nerve injury showed that GRG enhanced nerve regeneration when placed in nerve conduits, enabling recovery of massive nerve loss, previously unbridgeable, and enabled nerve regeneration at least as good as with autologous nerve graft “gold standard” treatment.


2021 ◽  
Vol 13 (4) ◽  
pp. 530-536
Author(s):  
Dong-Xu Huang ◽  
Jiang-Nan Li ◽  
Ge-Yi Zhang ◽  
Wen-Gang Wang ◽  
Lei Xia ◽  
...  

Peripheral nerves have complex and precise structures that differ from other types of tissues and intrinsic regeneration abilities after injury. Spontaneous recovery is possible for neuropraxia and axonotmesis, while surgical treatment is required for neurotmesis. It remains a challenge to repair nerve gaps, a series of severe neurotmesis. It seems that 3 cm is the upper limit distance for primate peripheral nerves to regenerate spontaneously. Nerve autografts are the gold standard treatment for bridging nerve gaps. In the present review, current biomaterials for repairing gaps after peripheral nerve injury are briefly summarized. Moreover, the microstructure of the peripheral nerve, classifications of peripheral nerve injury, and the Wallerian degeneration are reviewed in the biological view and clinical practice. The failure of nerve regeneration in nerve conduits bridging longer than 3 cm gaps may be contributing to the insufficient vascularization of nerve conduit materials. Future researchers could focus on advanced biomaterials that promoting the angiogenesis of nerve conduits.


2021 ◽  
Author(s):  
Songyang Liu ◽  
Yijun Liu ◽  
Liping Zhou ◽  
Ci Li ◽  
Meng Zhang ◽  
...  

Peripheral nerve injury (PNI) remains an unresolved challenge in the medicine area. With the development of biomaterial science and tissue engineering, a variety of nerve conduits were widely applied in...


2020 ◽  
Vol 12 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Tianhao Yu ◽  
Yingxi Xu ◽  
Xingya Jia ◽  
Qiang Ao

Peripheral nerve injury that can lead to disability affects millions of people worldwide annually. As the gold standard treatment of peripheral nerve injury, autologous nerve grafts are the most widely used and effective, but the clinical application of the treatment is greatly limited by many disadvantages. Tissue engineering nerve conduits gradually become promising autologous nerve grafts alternatives to promote the regeneration of injured nerves. This review places emphasis on tissue engineering designs of physical and topographic guiding structure inside nerve conduits in order to promote the migration of Schwann cells and directional regrowth of axons towards target organs. Various strategies of intraluminal guiding cues have been described and analyzed, including the incorporation with the tissue with natural basement membrane, collagen, microfilaments, intraluminal multi-channel and grooves in the inner wall. Recently, much progress has been made in the development of tissue engineering nerve conduits, but poor curative effect and deficiencies such as axon dispersion and malposition healing still remain unsolved, many crucial factors need to be considered in further research before clinical practices.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Aikeremujiang Muheremu ◽  
Qiang Ao

With significant advances in the research and application of nerve conduits, they have been used to repair peripheral nerve injury for several decades. Nerve conduits range from biological tubes to synthetic tubes, and from nondegradable tubes to biodegradable tubes. Researchers have explored hollow tubes, tubes filled with scaffolds containing neurotrophic factors, and those seeded with Schwann cells or stem cells. The therapeutic effect of nerve conduits is improving with increasing choice of conduit material, new construction of conduits, and the inclusion of neurotrophic factors and support cells in the conduits. Improvements in functional outcomes are expected when these are optimized for use in clinical practice.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Mina Aleemardani ◽  
Pariya Zare ◽  
Amelia Seifalian ◽  
Zohreh Bagher ◽  
Alexander M. Seifalian

Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE- approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps >30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting.


Sign in / Sign up

Export Citation Format

Share Document