Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar

Author(s):  
J.L. Guo ◽  
T.J. Chen
2020 ◽  
Vol 275 ◽  
pp. 116375 ◽  
Author(s):  
T.J. Chen ◽  
B.Q. Yang ◽  
B. Li ◽  
J.L. Guo ◽  
P. Zhang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 715
Author(s):  
Jangli Guo ◽  
Tijun Chen ◽  
Bo Li

In this work, the effect of drawing pass on the surface layer softening or plasticizing of Q235 steel bar during electrochemical cold drawing (ECD) was studied, as well as cold drawing in air (DIA) for comparison. The results indicate that the softening or plasticizing degree gradually decreases with increasing drawing pass. The reason for this should be that dislocations generated in surface layer are only partially overflowed from the surface in the form of additional dislocation flux. The general dislocation density thereby gradually increases with the increase in drawing pass, resulting in the increase in the work hardening degree of the surface layer, and thus, the drawing stress. In this case, the texture orientation of the bar surface layer is gradually enhanced. In contrast, the dislocation density, and thus the work hardening degree of DIA bar, are higher than those of the ECD partner, resulting in larger drawing stress. ECD can obtain a product with excellent comprehensive mechanical properties compared with DIA, and there are no cracks on the fracture surface of ECD bar drawn for at least seven passes.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 917 ◽  
Author(s):  
Jiang Liu ◽  
Junbiao Liu ◽  
Xuehui Zhang ◽  
Tahir Ahmad ◽  
Tongxiang Liang ◽  
...  

The nanograins (NG) on the top surface layer of alloy 690 were successfully prepared by ultrasonic surface rolling treatment (USRT). The average grain size of NG alloy 690 was 55 nm, and the thickness of the NG surface layer was about 1 μm. Meanwhile, the surface roughness was significantly reduced after surface nanocrystalliztion. The corrosion behavior of alloy 690 before and after USRT was studied in a secondary side environment containing chloride. Electrochemical corrosion experiments demonstrated that the passive film generated by USRT was denser than that formed on coarse-grained (CG) alloy 690. Pitting corrosion was prone to occur in grain boundaries of CG alloy 690, and the pits on the surface of NG alloy 690 were smaller than those generated on CG alloy 690 after 1000 h of an immersion experiment.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lucie Zarybnicka ◽  
Eliska Stranska ◽  
Jana Machotova ◽  
Gabriela Lencova

The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone) membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride) surface layer was covalently attached onto the poly(ethersulfone) support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.


Sign in / Sign up

Export Citation Format

Share Document