scholarly journals Polar and Helical Isomorphous Crystals of Proline Derivatives: Influence of a Fluorine Atom on the Electric Susceptibility

2021 ◽  
Author(s):  
Pierre Baillargeon ◽  
Tomasz Seidler ◽  
Benoît Champagne ◽  
Armand Soldera

AbstractTwo novel nonlinear optical isomorphous crystals of proline derivatives with alkyne functionality have been obtained (Boc-L-ProNH(CH2)2CCH and Boc-cis-4-fluoro-L-ProNH(CH2)2CCH). Both derivatives, which differ only by the substitution of a H atom to a F atom, adopt the same polar and columnar right-handed helix arrangement in the crystalline state. In addition, adjacent polar helical columns all point in the same direction, thus generating a macrodipole and a crystalline system conducive for second harmonic generation (SHG) properties. This isomorphous crystal system constitutes an interesting tool to study the effect of the fluorine atom on the dipole moment and on the first hyperpolarizability. Starting from the PBC optimized geometries of the crystals, the macroscopic second-order nonlinearity, χ(2), of the newly synthesized crystals has been estimated by quantum chemical calculations. These χ(2) responses are of the same order of magnitude as those of inorganic proline derivatives while smaller than those observed in crystals of push–pull π-conjugated molecules. Graphic Abstract

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Renlong Zhou ◽  
Xiaoshuang Chen ◽  
Yingyi Xiao ◽  
Bingju Zhou ◽  
Lingxi Wu ◽  
...  

We have studied the excitation second-order nonlinearity through a triangular lattice perforated gold film instead of square lattice in many papers. Under the excitation of surface plasmas resonance effect, the second order nonlinearity exists in the noncentrosymmetric split-ring resonators arrays. Reflection of fundamental frequency wave through a triangular lattice perforated gold film is obtained. We also described the second harmonic conversion efficiencies in the second order nonlinear optical process with the spectra. Moreover, the electric field distributions of fundamental frequency above the gold film region are calculated. The light propagation through the holes results in the enhancement of the second order nonlinearity including second harmonic generation as well as the sum (difference) frequency generation.


In the article the results of the quantum chemical study of copper (II) solvato-complexes with acetonitrile (AN), tetrafluoroborate anion (BF4–) and 3-hydroxyflavone (flv) of the composition [Cu(AN)6]2+, [Cu(BF4)(AN)5]+, [Cu(flv)(AN)5]2+, [Cu(flv)(BF4)(AN)4]+ are presented. Calculations were done using density function theory (DFT) on the M06-2X/6-311++G(d,p) level of theory. Obtained results were interpreted in terms of complexes geometry and topology of electron density distribution using non-covalent interactions (NCI) approach. It was shown that flv molecule is a monodentate ligand in copper (II) complexes and coordinates central atom via carbonyl oxygen. Intramolecular hydrogen bond that exists in an isolated flv molecule was found to be broken upon [Cu(flv)(AN)5]2+ complex formation. In [Cu(flv)(AN)5]2+ complex, a significant rotation of phenyl ring over the planar chromone fragment was spotted as a consequence of intramolecular hydrogen bond breaking. Upon inclusion of BF4– anion to the first solvation shell of Cu2+, an intracomplex hydrogen bond was formed between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion. NCI analysis had shown that a hydrogen bond between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion is significantly stronger than intramolecular hydrogen bond in an isolated flv molecule. In addition, flexible phenyl ring of flv molecule in [Cu(flv)(BF4)(AN)4]+ complex was found to be internally stabilized by the weak van der Waals attraction between oxygen atoms of chromone ring and phenyl hydrogens. These evidences led to a conclusion that [Cu(flv)(BF4)(AN)4]+ complex is more stable, comparing to the in [Cu(flv)(AN)5]2+ complex.


2018 ◽  
Vol 9 ◽  
pp. 2306-2314 ◽  
Author(s):  
Valerio F Gili ◽  
Lavinia Ghirardini ◽  
Davide Rocco ◽  
Giuseppe Marino ◽  
Ivan Favero ◽  
...  

Background: Dielectric nanoantennas have recently emerged as an alternative solution to plasmonics for nonlinear light manipulation at the nanoscale, thanks to the magnetic and electric resonances, the strong nonlinearities, and the low ohmic losses characterizing high refractive-index materials in the visible/near-infrared (NIR) region of the spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near-field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light to the nanopillar at coincidence with the anapole mode, hence boosting both second- and third-harmonic generation conversion efficiencies. More than one order of magnitude enhancement factors are measured for both processes with respect to the isolated structure. Conclusion: The present results reveal the possibility to achieve tuneable metamixers and higher resolution in nonlinear sensing and spectroscopy, by means of improved both pump coupling and emission efficiency due to the excitation of the anapole mode enhanced by the plasmonic nanoantenna.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 848 ◽  
Author(s):  
Kanta Mochizuki ◽  
Mako Sugiura ◽  
Hirofumi Yogo ◽  
Stefan Lundgaard ◽  
Jingwen Hu ◽  
...  

Metasurfaces of gold (Au) nanoparticles on a SiO2-Si substrate were fabricated for the enhancement of second harmonic generation (SHG) using electron beam lithography and lift-off. Triangular Au nanoprisms which are non-centro-symmetric and support second-order nonlinearity were examined for SHG. The thickness of the SiO2 spacer is shown to be an effective parameter to tune for maximising SHG. Electrical field enhancement at the fundamental wavelength was shown to define the SHG intensity. Numerical modeling of light enhancement was verified by experimental measurements of SHG and reflectivity spectra at the normal incidence. At the plasmonic resonance, SHG is enhanced up to ∼3.5 × 103 times for the optimised conditions.


1991 ◽  
Vol 224 ◽  
pp. 531-549 ◽  
Author(s):  
Michael S. Longuet-Higgins

In two recent papers (Longuet-Higgins 1989a,b) the author showed that the shape oscillations of bubbles can emit sound like a monopole source, at second order in the distortion parameter ε. In the second paper (LH2) it was predicted that the emission would be amplified when the second harmonic frequency 2σn of the shape oscillation approaches the frequency ω of the breathing mode. This ‘resonance’ would however be drastically limited by damping due to acoustic radiation and thermal diffusion. The predictions were confirmed by further numerical calculations in Longuet-Higgins (1990a).Ffowcs Williams & Guo (1991) have questioned the conclusions of LH2 on the grounds that near resonance there is a slow (secular) transfer of energy between the shape oscillation and the volumetric mode which tends to diminish the amplitude of the shape oscillation and hence falsify the perturbation analysis. They have also argued that the volumetric mode never grows sufficiently to produce sound of the stated order of magnitude. In the present paper we show that these assertions are unfounded. Ffowcs Williams & Guo considered only undamped oscillations. Here we show that when the appropriate damping is included in their analysis the secular transfer of energy becomes completely insignificant. The resulting pressure pulse (figure 5 below) is found to be essentially identical to that calculated in LH2, figure 3. Moreover, in the initial-value problem considered in LH2, the excitation of the volumetric mode takes place not by a secular energy transfer but by a resonance during the first few cycles of the shape oscillation. This accounts for the amplification near resonance found in Longuet-Higgins (1990a). Finally, it is pointed out that the initial energy of the shape oscillations is far greater than is required to produce the O(ε2) volume pulsations that were studied in LH2, and which were used for a comparison with field data. This acoustic radiation was not calculated by Ffowcs Williams & Guo.


2016 ◽  
Vol 23 (4) ◽  
pp. 959-965 ◽  
Author(s):  
Justin A. Newman ◽  
Shijie Zhang ◽  
Shane Z. Sullivan ◽  
Ximeng Y. Dow ◽  
Michael Becker ◽  
...  

Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X-ray diffraction. Using the synchronous digitization instrument, second-harmonic generation, two-photon-excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video-rate (15 frames s−1). A simple change in the incident wavelength enabled simultaneous imaging by two-photon-excited ultraviolet fluorescence, one-photon-excited visible fluorescence and laser transmittance. Development of an analytical model for the signal-to-noise enhancement afforded by synchronous digitization suggests a 15.6-fold improvement over previous photon-counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. These capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension.


2004 ◽  
Vol 13 (03n04) ◽  
pp. 445-449
Author(s):  
JONGBAE KIM ◽  
JUNG JIN JU ◽  
MIN-SU KIM

The distributions of electric field and the induced second-order nonlinearity are discussed in a poling scheme where the width of a periodic electrode is shorter than the conventional coherent length. The theoretical aspects of quasi-phase matching for a subsequent experiment in second harmonic generation are analyzed. The present analysis consistently explains that the conversion efficiency can be enhanced if the electrode width is shortened, and maximized if the electrode width is optimized.


1998 ◽  
Vol 76 (11) ◽  
pp. 1616-1632
Author(s):  
Bozena Borecka-Bednarz ◽  
Alan V Bree ◽  
Brian O Patrick ◽  
John R Scheffer ◽  
James Trotter

Second-harmonic generation in the solid state is restricted to materials that crystallize in non-centrosymmetric space groups. Unfortunately, the vast majority of solids crystallize in centrosymmetric space groups and are therefore SHG-inactive. The requirement for solid-state asymmetry is addressed in a new series of organic salts. The acid p-nitrophenylglycine, SHG-inactive due to its centrosymmetric (P1) packing, was coupled to six optically pure amines to form salts and (or) complexes that, by virtue of their chiral counterion, crystallized in non-centrosymmetric space groups. The 1064 nm output from a Nd:YAG laser produced 532 nm second-harmonic generation from each of the six salts, with three of the salts producing second-harmonic intensities at least an order of magnitude greater than that of our standard, urea. X-ray crystallographic analysis was carried out on five of the six salts, and an attempt was made to rationalize the second-harmonic intensity of each of these five salts based on the orientation of its molecular charge-transfer axis in the unit cell and on its chromophore density.Key words: second-harmonic generation, nonlinear optics, chiral organic salts, crystal structures.


Sign in / Sign up

Export Citation Format

Share Document