scholarly journals Isolation of secondary metabolites from the mediterranean sponge species; Hemimycale columella and its biological properties

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ilias Marmouzi ◽  
Shahira M. Ezzat ◽  
Eman Sherien Mostafa ◽  
Meryem El Jemli ◽  
Rasha Ali Radwan ◽  
...  

AbstractDespite the richness and biodiversity of invertebrates and algae in the Mediterranean Sea, these organisms are still poorly studied. The objective of our research is the discovery of bioactive lead compounds from the Mediterranean Sea sponge Hemimycale Collumella (HC). HC sponge (189.0 g) was collected from Mdiq costs on the Mediterranean Sea and extracted with methanol to yield (10 g) which was then subjected to fractionation. A bio-guided protocol was applied through evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and Oxygen Radical Absorbance Capacity (ORAC), α-amylase, β-glucosidase, pancreatic lipase inhibition as well as anti-collagenase, anti-elastase, antityrosinase and cytotoxic activity. 2,3-O-Hexahydroxydiphenoyl-(α/β)-glucose (1) and gentisic acid 2-O-β-glucoside (2) were isolated from the water fraction, quercetin-3-O-β-glucopyranoside (3), kaempferol 3-O-β-glucopyranoside (4) and isorhamnetin 3-O-β-glucopyranoside (5) from n-butanol fraction, gallic acid (6) from ethyl acetate fraction and gallic acid-3-methyl ether (7) from methylene chloride fraction. Compound 5 had the highest DPPH and ORAC activity. Compounds 1–5 had promising lipase inhibition activities which exceeded that of the standard Orlistat, while compounds 1–7 showed anti-tyrosinase activity higher than that of the standard Hydroquinone monomethyl ether. This is the first report for evaluation of the biological activities of 2, 3-O-hexahydroxydiphenoyl-(α/β)-glucose (1), gentisic acid 2-O-β-glucoside (2) and gallic acid-3-methyl ether (7).

2020 ◽  
Author(s):  
Jonathan V. Trueblood ◽  
Alesia Nicosia ◽  
Anja Engel ◽  
Birthe Zäncker ◽  
Matteo Rinaldi ◽  
...  

Abstract. Ice nucleating particles (INP) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSA), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INP, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INP are derived from two separate classes of organic matter in SSA. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as total organic carbon (TOC) or SSA surface area, which may mask specific trends in the separate classes of INPs. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INP that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from May 10 to June 10, 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (SML) and in SSA produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSA was also evaluated. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases of iron in the SML and bacterial abundances. Increases of INPs in marine SSA (INPSSA) were not observed before a delay of three days compared to increases in the SML, and are likely a result of a strong influence of bulk SSW INP for the temperatures investigated (T = −18 °C for SSA, T = −16 °C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T ≥ −22 °C) INPSSA concentrations are correlated with water soluble organic matter in the SSA, but also to SSW parameters (POCSSW INPSSW,−16 °C) while cold INPSSA (T 


Planta Medica ◽  
2019 ◽  
Vol 85 (11/12) ◽  
pp. 869-910
Author(s):  
Sergio Rosselli ◽  
Gianfranco Fontana ◽  
Maurizio Bruno

AbstractThe 2 genera Ballota and Otostegia, belonging to the Lamiaceae family, are closely related taxonomically and found mainly in the Mediterranean area, Middle East, and North Africa. Since ancient times, they have been largely employed in traditional medicine for their biological properties such as antimicrobial, anti-inflammatory, antispasmodic, insecticidal, anti-malaria, etc. Phytochemical investigations of Ballota and Otostegia species have revealed that diterpenoids are the main constituents of the genera. A large number of flavonoids and other metabolites were also identified. This review, covering literature from 1911 up to 2018, includes traditional uses, chemical profiles (both of volatile and nonvolatile metabolites), and biological properties of all the taxa of these 2 genera studied to date.


2015 ◽  
Vol 116 (1) ◽  
pp. 69-74 ◽  
Author(s):  
L Pérez ◽  
ML Abarca ◽  
F Latif-Eugenín ◽  
R Beaz-Hidalgo ◽  
MJ Figueras ◽  
...  

2008 ◽  
Vol 34 (4) ◽  
pp. 514-515 ◽  
Author(s):  
Giovanni Di Guardo

2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


Sign in / Sign up

Export Citation Format

Share Document