scholarly journals Gold@mesoporous silica nanocarriers for the effective delivery of antibiotics and by-passing of β-lactam resistance

2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Gonçalo A. Marcelo ◽  
Maria Paula Duarte ◽  
Elisabete Oliveira
Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3899 ◽  
Author(s):  
Mingshu Cui ◽  
Wei Zhang ◽  
Luyao Xie ◽  
Lu Chen ◽  
Lu Xu

Because of its tunable textural properties and chirality feature, chiral mesoporous silica (CMS) gained significant consideration in many fields and has been developed rapidly in recent years. In this review, we provide an overview of synthesis strategies for fabricating CMS together with its main applications. The properties of CMS, including morphology and mesostructures and enantiomer excess (ee), can be altered according to the synthetic conditions during the synthesis process. Despite its primary stage, CMS has attracted extensive attention in many fields. In particular, CMS nanoparticles are widely used for enantioselective resolution and adsorption of chiral compounds with desirable separation capability. Also, CMS acts as a promising candidate for the effective delivery of chiral or achiral drugs to produce a chiral-responsive manner. Moreover, CMS also plays an important role in chromatographic separations and asymmetric catalysis. There has been an in-depth review of the synthetic methods and mechanisms of CMS. And this review aims to give a deep insight into the synthesis and application of CMS, especially in recent years, and highlights the significance that it may have in the future.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212858 ◽  
Author(s):  
Erik Tenland ◽  
Alexander Pochert ◽  
Nitya Krishnan ◽  
Komal Umashankar Rao ◽  
Sadaf Kalsum ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 9517-9523 ◽  
Author(s):  
Huizhen Fan ◽  
Yu Fan ◽  
Wenna Du ◽  
Rui Cai ◽  
Xinshuang Gao ◽  
...  

ICG forms aggregates in positively charged mesoporous silica, which show an enhanced type I photoreaction pathway.


2003 ◽  
Vol 775 ◽  
Author(s):  
G.V.Rama Rao ◽  
Qiang Fu ◽  
Linnea K. Ista ◽  
Huifang Xu ◽  
S. Balamurugan ◽  
...  

AbstractThis study details development of hybrid mesoporous materials in which molecular transport through mesopores can be precisely controlled and reversibly modulated. Mesoporous silica materials formed by surfactant templating were modified by surface initiated atom transfer radical polymerization of poly(N-isopropyl acrylamide) (PNIPAAm) a stimuli responsive polymer (SRP) within the porous network. Thermo gravimetric analysis and FTIR spectroscopy were used to confirm the presence of PNIPAAm on the silica surface. Nitrogen porosimetry, transmission electron microscopy and X-ray diffraction analyses confirmed that polymerization occurred uniformly within the porous network. Uptake and release of fluorescent dyes from the particles was monitored by spectrofluorimetry and scanning laser confocal microscopy. Results suggest that the presence of PNIPAAm, a SRP, in the porous network can be used to modulate the transport of aqueous solutes. At low temperature, (e.g., room temperature) the PNIPAAm is hydrated and extended and inhibits transport of analytes; at higher temperatures (e.g., 50°C) it is hydrophobic and is collapsed within the pore network, thus allowing solute diffusion into or out of the mesoporous silica. The transition form hydrophilic to hydrophobic state on polymer grafted mesoporous membranes was determined by contact angle measurements. This work has implications for the development of materials for the selective control of transport of molecular solutes in a variety of applications.


Sign in / Sign up

Export Citation Format

Share Document