scholarly journals Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest

2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Emrehan Kutlug Sahin
2021 ◽  
Vol 9 ◽  
Author(s):  
Shibao Wang ◽  
Jianqi Zhuang ◽  
Jia Zheng ◽  
Hongyu Fan ◽  
Jiaxu Kong ◽  
...  

Landslides are widely distributed worldwide and often result in tremendous casualties and economic losses, especially in the Loess Plateau of China. Taking Wuqi County in the hinterland of the Loess Plateau as the research area, using Bayesian hyperparameters to optimize random forest and extreme gradient boosting decision trees model for landslide susceptibility mapping, and the two optimized models are compared. In addition, 14 landslide influencing factors are selected, and 734 landslides are obtained according to field investigation and reports from literals. The landslides were randomly divided into training data (70%) and validation data (30%). The hyperparameters of the random forest and extreme gradient boosting decision tree models were optimized using a Bayesian algorithm, and then the optimal hyperparameters are selected for landslide susceptibility mapping. Both models were evaluated and compared using the receiver operating characteristic curve and confusion matrix. The results show that the AUC validation data of the Bayesian optimized random forest and extreme gradient boosting decision tree model are 0.88 and 0.86, respectively, which showed an improvement of 4 and 3%, indicating that the prediction performance of the two models has been improved. However, the random forest model has a higher predictive ability than the extreme gradient boosting decision tree model. Thus, hyperparameter optimization is of great significance in the improvement of the prediction accuracy of the model. Therefore, the optimized model can generate a high-quality landslide susceptibility map.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3066
Author(s):  
Guangzhi Rong ◽  
Si Alu ◽  
Kaiwei Li ◽  
Yulin Su ◽  
Jiquan Zhang ◽  
...  

Among the most frequent and dangerous natural hazards, landslides often result in huge casualties and economic losses. Landslide susceptibility mapping (LSM) is an excellent approach for protecting and reducing the risks by landslides. This study aims to explore the performance of Bayesian optimization (BO) in the random forest (RF) and gradient boosting decision tree (GBDT) model for LSM and applied in Shuicheng County, China. Multiple data sources are used to obtain 17 conditioning factors of landslides, Borderline-SMOTE and Randomundersample methods are combined to solve the imbalanced sample problem. RF and GBDT models before and after BO are adopted to calculate the susceptibility value of landslides and produce LSMs and these models were compared and evaluated using multiple validation approach. The results demonstrated that the models we proposed all have high enough model accuracy to be applied to produce LSM, the performance of the RF is better than the GBDT model without BO, while after adopting the Bayesian optimized hyperparameters, the prediction accuracy of the RF and GBDT models is improved by 1% and 7%, respectively and the Bayesian optimized GBDT model is the best for LSM in this four models. In summary, the Bayesian optimized RF and GBDT models, especially the GBDT model we proposed for landslide susceptibility assessment and LSM construction has a very good application performance and development prospects.


Author(s):  
Yue Wang ◽  
Deliang Sun ◽  
Haijia Wen ◽  
Hong Zhang ◽  
Fengtai Zhang

To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite images; and extensive field surveys. Subsequently; a geospatial database was established based on 987 historical landslides in the study area. Then; all the landslides were randomly divided into two datasets: 70% of them were used as the training dataset and 30% as the test dataset. Furthermore; under five primary conditioning factors (i.e., topography factors; geological factors; environmental factors; human engineering activities; and triggering factors), 22 secondary conditioning factors were selected to form an evaluation factor library for analyzing the landslide susceptibility. On this basis; the RF model training and the FR model mathematical analysis were performed; and the established models were used for the landslide susceptibility simulation in the entire area of Yunyang County. Next; based on the analysis results; the susceptibility maps were divided into five classes: very low; low; medium; high; and very high. In addition; the importance of conditioning factors was ranked and the influence of landslides was explored by using the RF model. The area under the curve (AUC) value of receiver operating characteristic (ROC) curve; precision; accuracy; and recall ratio were used to analyze the predictive ability of the above two LSM models. The results indicated a difference in the performances between the two models. The RF model (AUC = 0.988) performed better than the FR model (AUC = 0.716). Moreover; compared with the FR model; the RF model showed a higher coincidence degree between the areas in the high and the very low susceptibility classes; on the one hand; and the geographical spatial distribution of historical landslides; on the other hand. Therefore; it was concluded that the RF model was more suitable for landslide susceptibility evaluation in Yunyang County; because of its significant model performance; reliability; and stability. The outcome also provided a theoretical basis for application of machine learning techniques (e.g., RF) in landslide prevention; mitigation; and urban planning; so as to deliver an adequate response to the increasing demand for effective and low-cost tools in landslide susceptibility assessments.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 421 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Ataollah Shirzadi ◽  
Himan Shahabi ◽  
Wei Chen ◽  
John J Clague ◽  
...  

We generated high-quality shallow landslide susceptibility maps for Bijar County, Kurdistan Province, Iran, using Random Forest (RAF), an ensemble computational intelligence method and three meta classifiers—Bagging (BA, BA-RAF), Random Subspace (RS, RS-RAF), and Rotation Forest (RF, RF-RAF). Modeling and validation were done on 111 shallow landslide locations using 20 conditioning factors tested by the Information Gain Ratio (IGR) technique. We assessed model performance with statistically based indexes, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). All four machine learning models that we tested yielded excellent goodness-of-fit and prediction accuracy, but the RF-RAF ensemble model (AUC = 0.936) outperformed the BA-RAF, RS-RAF (AUC = 0.907), and RAF (AUC = 0.812) models. The results also show that the Random Forest model significantly improved the predictive capability of the RAF-based classifier and, therefore, can be considered as a useful and an effective tool in regional shallow landslide susceptibility mapping.


2021 ◽  
pp. 1-20
Author(s):  
Renata Pacheco Quevedo ◽  
Daniel Andrade Maciel ◽  
Tatiana Dias Tardelli Uehara ◽  
Matej Vojtek ◽  
Camilo Daleles Rennó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document