A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping

2018 ◽  
Vol 35 (4) ◽  
pp. 341-363 ◽  
Author(s):  
Emrehan Kutlug Sahin ◽  
Ismail Colkesen ◽  
Taskin Kavzoglu
Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2685 ◽  
Author(s):  
Fumeng Zhao ◽  
Xingmin Meng ◽  
Yi Zhang ◽  
Guan Chen ◽  
Xiaojun Su ◽  
...  

Geological conditions along the Karakorum Highway (KKH) promote the occurrence of frequent natural disasters, which pose a serious threat to its normal operation. Landslide susceptibility mapping (LSM) provides a basis for analyzing and evaluating the degree of landslide susceptibility of an area. However, there has been limited analysis of actual landslide activity processes in real-time. The SBAS-InSAR (Small Baseline Subsets-Interferometric Synthetic Aperture Radar) method can fully consider the current landslide susceptibility situation and, thus, it can be used to optimize the results of LSM. In this study, we compared the results of LSM using logistic regression and Random Forest models along the KKH. Both approaches produced a classification in terms of very low, low, moderate, high, and very high landslide susceptibility. The evaluation results of the two models revealed a high susceptibility of land sliding in the Gaizi Valley and the Tashkurgan Valley. The Receiver Operating Characteristic (ROC) curve and historical landslide verification points were used to compare the evaluation accuracy of the two models. The Area under Curve (AUC) value of the Random Forest model was 0.981, and 98.79% of the historical landslide points in the verification points fell within the range of high and very high landslide susceptibility degrees. The Random Forest evaluation results were found to be superior to those of the logistic regression and they were combined with the SBAS-InSAR results to conduct a new LSM. The results showed an increase in the landslide susceptibility degree for 2808 cells. We conclude that this optimized landslide susceptibility mapping can provide valuable decision support for disaster prevention and it also provides theoretical guidance for the maintenance and normal operation of KKH.


2016 ◽  
Vol 85 (3) ◽  
pp. 1323-1346 ◽  
Author(s):  
Nussaïbah B. Raja ◽  
Ihsan Çiçek ◽  
Necla Türkoğlu ◽  
Olgu Aydin ◽  
Akiyuki Kawasaki

Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 762 ◽  
Author(s):  
Renwei Li ◽  
Nianqin Wang

The main purpose of this study is to apply three bivariate statistical models, namely weight of evidence (WoE), evidence belief function (EBF) and index of entropy (IoE), and their ensembles with logistic regression (LR) for landslide susceptibility mapping in Muchuan County, China. First, a landslide inventory map contained 279 landslides was obtained through the field investigation and interpretation of aerial photographs. Next, the landslides were randomly divided into two parts for training and validation with the ratio of 70/30. In addition, according to the regional geological environment characteristics, twelve landslide conditioning factors were selected, including altitude, plan curvature, profile curvature, slope angle, distance to roads, distance to rivers, topographic wetness index (TWI), normalized different vegetation index (NDVI), land use, soil, and lithology. Subsequently, the landslide susceptibility mapping was carried out by the above models. Eventually, the accuracy of this research was validated by the area under the receiver operating characteristic (ROC) curve and the results indicated that the landslide susceptibility map produced by EBF-LR model has the highest accuracy (0.826), followed by IoE-LR model (0.825), WoE-LR model (0.792), EBF model (0.791), IoE model (0.778), and WoE model (0.753). The results of this study can provide references of landslide prevention and land use planning for local government.


Sign in / Sign up

Export Citation Format

Share Document