scholarly journals Development and evaluation of drug delivery patch for topical wound healing application

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Sadia Hassan ◽  
Murtaza Najabat Ali ◽  
Mariam Mir ◽  
Ammad Ahmed ◽  
Munam Arshad

AbstractWound treatment remains a challenge to many clinicians because of the complexities of the wound healing process. With the astonishing progress of biomedical engineering during the past few decades, conventional drug delivery systems have been evolved into smart drug delivery systems with stimuli-responsive characteristics. The objective of this study was to develop and evaluate an electromechanically actuated drug dispensation device which can release active pharmaceutical compound in a controlled fashion. Additive manufacturing was employed to design and fabricate the device. Haptic technology was used to provide stimulation for drug release, and Cicatrin was used to evaluate the drug release patterns of device. Drug release study was comprised of in vitro drug release, static study, and the purpose of this study was to develop a compliance chart for different wound conditions. The effectiveness of shortlisted drug regimen from compliance chart was validated through microbial study and animal studies. The results of animal studies were compared with commercially available drug release systems. The results of drug release studies gave different dose regimens for different wound conditions. The effective dose regimen was able to create 1-cm-wide microbial zone of inhibitions. The wound healing rate of mice for commercially available release system for five consecutive days was 10%, 10%, 20%, 40% and 50% and for test device was 10%, 30%, 60%, 90% and 100%. Hence, the device proved its effectiveness and efficacy of dosage regimen for wound healing applications through in vitro, microbial and in vivo studies. In conclusion, this device proved to be an accurate and specific drug delivery system with improved medication and therapeutic outcomes for personalized medication.

2012 ◽  
Vol 430 (1-2) ◽  
pp. 276-281 ◽  
Author(s):  
Yiguang Jin ◽  
Yanju Lian ◽  
Lina Du ◽  
Shuangmiao Wang ◽  
Chang Su ◽  
...  

2009 ◽  
Vol 381 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Yiguang Jin ◽  
Lei Xing ◽  
Ying Tian ◽  
Miao Li ◽  
Chunsheng Gao ◽  
...  

2015 ◽  
Vol 18 (7) ◽  
pp. 678-689 ◽  
Author(s):  
Xiaoqian Shan ◽  
Changsheng Liu ◽  
Fengqian Li ◽  
Chunfa Ouyang ◽  
Qun Gao ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 692-695
Author(s):  
Thomas Eickner ◽  
Michael Teske ◽  
Natalia Rekowska ◽  
Volkmar Senz ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract For the investigation of in vitro drug release, methods have been used in which samples of drug delivery systems are immersed in release medium. The medium is used to measure drug concentration via chromatography or photometry. These systems are suitable to investigate the drug release of different systems or to simulate tissue environments. When considering predominantly humid regions, e.g. for drug release into the cochlea through the round window membrane by a drug delivery system placed at that membrane, reproducible in vitro determination of drug release becomes particularly challenging. In this study the development of a system is reported that allows the investigation of the in vitro drug release simulating such conditions. The presented test system consists of an alginate hydrogel in glass vials simulating the biological membrane, which separates the drug delivery system from the medium filled compartment. Saline is used as release medium and injected under the hydrogel. The samples are placed on top of the hydrogel, which slightly contacts the medium surface. The drug concentration in the release medium was determined by HPLC measurements. This system allows for testing the release of dexamethasone without the samples being completely surrounded by medium. The hydrogel mediates the diffusion of the drug by ensuring the contact with the medium. Release was monitored for more than 23 days. The presented concept was successfully designed and manufactured. The system is inexpensive and can be duplicated easily. In this study, it was used to monitor the drug release of dexamethasone from PEGDA700 derived polymer. One challenge that remains to be considered is the low mechanical stability of the hydrogel, which results in a need for repeated manufacturing during the handling of the system.


Author(s):  
Agnieszka Snela ◽  
Barbara Jadach ◽  
Anna Froelich ◽  
Marcin Skotnicki ◽  
Kasylda Milczewska ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3408 ◽  
Author(s):  
Anna-Karin Pada ◽  
Diti Desai ◽  
Kaiyao Sun ◽  
Narayana Prakirth Govardhanam ◽  
Kid Törnquist ◽  
...  

Mesoporous silica nanoparticles (MSNs) have been widely studied as drug delivery systems in nanomedicine. Surface coating of MSNs have enabled them to perform efficiently in terms of bioavailability, biocompatibility, therapeutic efficacy and targeting capability. Recent studies have suggested the use of polydopamine (PDA) as a facilitative coating for MSNs that provides sustained and pH-responsive drug release, owing to the adhesive “molecular-glue” function of PDA. This further endows these hybrid MSN@PDA particles with the ability to carry large amounts of hydrophilic drugs. In this study, we expand the feasibility of this platform in terms of exploring its ability to also deliver hydrophobic drugs, as well as investigate the effect of particle shape on intracellular delivery of both a hydrophilic and hydrophobic anticancer drug. MSN@PDA loaded with doxorubicin (hydrophilic) and fingolimod (hydrophobic) was studied via a systematic in vitro approach (cellular internalization, intracellular drug distribution and cytotoxicity). To promote the cellular uptake of the MSN@PDA particles, they were further coated with a polyethylene imine (PEI)-polyethylene glycol (PEG) copolymer. Drug-loaded, copolymer-coated MSN@PDA showed effective cellular uptake, intracellular release and an amplified cytotoxic effect with both doxorubicin and fingolimod. Additionally, rods exhibited delayed intracellular drug release and superior intracellular uptake compared to spheres. Hence, the study provides an example of how the choice and design of drug delivery systems can be tuned by the need for performance, and confirms the PDA coating of MSNs as a useful drug delivery platform beyond hydrophilic drugs.


2019 ◽  
Vol 11 (1) ◽  
pp. 247 ◽  
Author(s):  
Shahid Ud Din Wani ◽  
Gangadharappa H. V. ◽  
Ashish N. P.

Objective: The aim of the present work was to formulate silk fibroin (SF) nanospheres (NS’s) for drug delivery application. The current study was designed to advance the water solubility and bio-availability of telmisartan by nanoprecipitation method.Methods: SF NS’s loaded with TS were prepared by nanoprecipitation method. The drug was dissolved in aqueous solution of SF by using acetone as a non-solvent. The prepared NS’s were then characterized by FTIR, X-ray diffraction and zeta potential, and were evaluated for its, surface morphology, %drug content, encapsulation efficiency and in vitro drug release.Results: The evaluation results of SF NS’s loaded of TS showed 74.22±0.17 % entrapment efficiency, 35.21±0.02 % of drug loading, and-4.9 mV to-13.6 mV of zeta potential due to the proper bounding of TS with the β-sheets of SF, the particle size reported was within the size range of 160-186 nm having smooth surface and were spherical in shape. The SFNS’s pattern switched from random coil to β-sheet formation on treating with acetone. FTIR and DSC studies marked no such inter-molecular interactions between SF and drug molecules. The % cumulative in vitro drug release from SF NS’s exhibited quick burst release. The in vitro cumulative drug release of SF NS’s of TS it was found that about 74% of the drug was released within 8 h and about 96% of drug released at 24 hr. The rate of drug release increased with the increase in SF ratio.Conclusion: It is believed that these SF NS’s will find potential applications in drug delivery release as drug carriers, especially poor water-soluble drugs. All these results proposed that SF NS’s are eventuality handy in various drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document