Effect of Nano-modified Binder on Fracture Properties of Warm Mix Asphalt Containing RAP

Author(s):  
G. Sandeep Reddy ◽  
A. Ramesh ◽  
V. Venkat Ramayya
Author(s):  
Biswajit K. Bairgi ◽  
A.S.M. Asifur Rahman ◽  
Rafiqul A. Tarefder ◽  
Matias M. Mendez Larrain

Warm-mix asphalt (WMA) technologies allow binder softening for compaction benefits. Lower production temperature also causes reduced short-term aging in WMA. Considering the long-term implication of the reduced aging and binder softening, WMA is being questioned about its rutting characteristics. As such, this study evaluates different WMA technologies for rutting characteristics in comparison to traditional hot-mix asphalt (HMA) through laboratory and field investigation. The study utilized the long-term pavement performance (LTPP) project in the state of New Mexico called Specific Pavement Study-10 (SPS-10), which was designed to evaluate the WMA performances. The LTPP SPS-10 section includes: (i) control HMA, (ii) foaming, (iii) Evotherm, (iv) Cecabase 1, and (v) Cecabase 2 mixtures. Cecabase 2 mixture consists of a polymer-modified binder (PG 70-28+), whereas other mixtures consist of PG 70-28 binder. The aggregate type, properties, and gradations are the same in all the sections. Laboratory evaluation of rutting was conducted through the Hamburg wheel tracking test. Long-term field rutting was evaluated through Mandli’s pavement profile scanner, a laser-based distress evaluation technology. The study found that WMA with foaming, Evotherm, or Cecabase shows slightly higher rutting compared with the control HMA; however, all the sections satisfied laboratory and field rutting criteria. The use of a polymer-modified binder in WMA significantly improves the rutting characteristics.


2019 ◽  
Vol 48 (5) ◽  
pp. 363-374 ◽  
Author(s):  
Abdelrahman Moukhtar Naser ◽  
Hamada Abd El - Wahab ◽  
Mohamed Abd El Fattah Moustafa El Nady ◽  
Abdelzaher E.A. Mostafa ◽  
Long Lin ◽  
...  

Purpose This paper aims to investigate the best methods of utilisation of reclaimed asphalt pavements (RAP) in Egypt, to determine the effect of using 100% RAP instead of using virgin aggregates and asphalt; investigate the effect of thermoplastic elastomer polymer as asphalt modifier; and also improve the mechanical and physical characteristics and consequently improving the quality of asphalt paving, increasing service life of asphalt-paving and reducing costs. Design/methodology/approach Nano acrylate terpolymers were prepared with different % (Wt.) of and were characterised by Fourier transforms infrared (FTIR), for molecular weight (Mw), by thermo gravimetric analysis (TGA) and by transmission electron microscopy (TEM). A 4% (Wt.) of the prepared nanoemulsion terpolymer was mixed with virgin asphalt as a polymer modifier, to improve and reuse of the RAP. The modified binder was tested. The tests conducted include penetration, kinematic viscosity, softening point and specific gravity. Application of Marshall mix design types; hot mix asphalt (HMA), warm mix asphalt (WMA) and cold in place recycled (CIR). Four different mix designs used; control mix contained virgin asphalt by HMA, and the other three mix designs were polymermodified asphalt sample by HMA, WMA and CIR. Findings The research results showed that using 4 Wt.% of the prepared nanoemulsion terpolymer to produce hot mix asphalt (HMA) and warm mix asphalt (WMA) achieved higher stability compared to the control mix and cold in place recycled (CIR). Research limitations/implications This paper discusses the preparation and the characterisation of nanoemulsion and its application in RAPs to enhance and improve the RAP quality. Practical implications Nano-acrylate terpolymer can be used as a new polymer to modify asphalt to achieve the required specifications for RAP. Originality/value According to the most recent surveys, Europe produced 265 tonnes of asphalt for road applications in 2014, while the amount of available RAP was more than 50 tonnes. The use of RAP in new blended mixes reduces the need of neat asphalt, making RAP recycling economically attractive.


2019 ◽  
Vol 81 (4) ◽  
Author(s):  
Gatot Rusbintardjo ◽  
Sitti Salmah Abdul Wahab ◽  
Faridah Hanim Khairuddin ◽  
Ahmad Nazrul Hakimi Ibrahim ◽  
Nur Izzi Md Yusoff ◽  
...  

Pavement failure phenomena is normally caused by low quality of mixture materials, especially bitumen. The modification of bitumen is one of the alternatives to improve the performance of the material. Therefore, this study was conducted to investigate the performance of a polymer-modified binder (PG-76) with the addition of different percentages of Reduce Heat-Warm Mix Asphalt (RH-WMA) at 1, 2, 3, 4 and 5 % (by-weight of binder). Several testings such as penetration, softening point and ductility tests were conducted to determine the physical properties of PG-76 and RH-WMA modified binders. The molecular structures of the materials were analysed using Fourier transform infrared spectroscopy (FTIR) test while the contact angle test was conducted to investigate the type of binder’s surface. In addition, an optical microscopy test was carried out to determine the morphological properties of the modified binders. Results show that the PG-76’s hardness decreases with the increasing of RH-WMA percentage, but the ductility values are still within the specification. The FTIR test shows an increase of RH-WMA percentage does not provide a significant reaction of the binder and the original properties of the materials remain. The morphology test shows that all percentage of RH-WMA selected are well dispersed in bitumen PG-76. Based on the contact angle results, all the PG-76 and RH-WMA modified binders fall into hydrophobic category.


2013 ◽  
Vol 275-277 ◽  
pp. 2097-2102 ◽  
Author(s):  
Hong Zhu ◽  
Zhao Xing Xie ◽  
Wen Zhong Fan ◽  
Li Li Wang ◽  
Ju Nan Shen

The objective of this research was to investigate the influence of Warm Mix Asphalt (WMA) additives on asphalt mixture properties through the laboratory testing programs such as air voids, tensile strength ratio (TSR), dynamic stability, and low temperature bending failure strain tests. The experimental design included the use of three WMA additives of Sasobit, Evotherm and Rediset, one base (unmodified) binder source, and one modified binder source. The WMA mixtures were compared to those of controls, i.e., mixtures without the additives. Results from this study showed that: (1) WMA mixtures with Rediset, Evotherm, and Sasobit had slightly higher air voids than Hot Mix Asphalt (HMA); (2) All WMA mixtures with SBS modified asphalt have lower TSR values than the original ones. The TSR of the WMA mixtures with base (unmodified) asphalt is not significantly different from HMA; (3) The WMA mixtures with SBS modified asphalt have lower values of the dynamic stability and bending failure strain than HMA, while the WMA mixtures with base asphalt are contrary, except with Rediset additives.


2017 ◽  
Vol 141 ◽  
pp. 578-588 ◽  
Author(s):  
Babak Golchin ◽  
Meor Othman Hamzah ◽  
Mohd Rosli Mohd Hasan

2013 ◽  
Vol 753-755 ◽  
pp. 585-590 ◽  
Author(s):  
Peng Cheng Shi ◽  
Zhao Xing Xie ◽  
Wen Zhong Fan ◽  
Li Li Wang ◽  
Ju Nan Shen

The objective of this research was to investigate the influence of WMA additives on the properties of WMA binders through a series of laboratory testing such as viscosity, penetration, ductility, and softening points on the binders. The experimental design included the use of three WMA additives of Sasobit, Rediset, and Evotherm at a recommended content of 2, 2 and 0.6% respectively, two base binder sources, and one modified binder sources. The properties of WMA binders were compared to those of original asphalts without the additives as controls. Results from this study showed that: (1) Three WMA additives of Sasobit, Evotherm and Rediset increased the dynamic viscosity (60°C) of asphalt binders; (2) The additives of Evotherm and Rediset reduced the kinematic viscosity (130°C) of tested WMA asphalt binders. Adding 2 % Sasobit did not affect the kinematic viscosity; (3) Adding 2 % Sasobit reduced the penetration of WMA asphalt binder obviously. The most reduced rate of penetration is 22.7 % for SK base asphalt binder; (4) The WMA additives increased the softening point of WMA asphalt binders, except for the case with 0.6 % Evotherm. The effect of adding 2% Sasobit on the softening point of asphalt binders is the most significant, while the effect of adding 0.6 % Evotherm is the least; (5) adding 0.6 % Evotherm increased the ductility of warm asphalt binders by 28.6 %, while adding 2 % Sasobit reduced the ductility of warm asphalt binders obviously.


2012 ◽  
Vol 40 (5) ◽  
pp. 20120064 ◽  
Author(s):  
Hainian Wang ◽  
Zhengxia Dang ◽  
Zhanping You ◽  
Dongwei Cao

Author(s):  
Fan Gu ◽  
Yuqing Zhang ◽  
Xue Luo ◽  
Rong Luo ◽  
Robert L. Lytton

1997 ◽  
Vol 473 ◽  
Author(s):  
David R. Clarke

ABSTRACTAs in other engineered structures, fracture occasionally occurs in integrated microelectronic circuits. Fracture can take a number of forms including voiding of metallic interconnect lines, decohesion of interfaces, and stress-induced microcracking of thin films. The characteristic feature that distinguishes such fracture phenomena from similar behaviors in other engineered structures is the length scales involved, typically micron and sub-micron. This length scale necessitates new techniques for measuring mechanical and fracture properties. In this work, we describe non-contact optical techniques for probing strains and a microscopic “decohesion” test for measuring interface fracture resistance in integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document