Selecting Warm Mix Asphalt (WMA) Additives by the Properties of WMA Binders

2013 ◽  
Vol 753-755 ◽  
pp. 585-590 ◽  
Author(s):  
Peng Cheng Shi ◽  
Zhao Xing Xie ◽  
Wen Zhong Fan ◽  
Li Li Wang ◽  
Ju Nan Shen

The objective of this research was to investigate the influence of WMA additives on the properties of WMA binders through a series of laboratory testing such as viscosity, penetration, ductility, and softening points on the binders. The experimental design included the use of three WMA additives of Sasobit, Rediset, and Evotherm at a recommended content of 2, 2 and 0.6% respectively, two base binder sources, and one modified binder sources. The properties of WMA binders were compared to those of original asphalts without the additives as controls. Results from this study showed that: (1) Three WMA additives of Sasobit, Evotherm and Rediset increased the dynamic viscosity (60°C) of asphalt binders; (2) The additives of Evotherm and Rediset reduced the kinematic viscosity (130°C) of tested WMA asphalt binders. Adding 2 % Sasobit did not affect the kinematic viscosity; (3) Adding 2 % Sasobit reduced the penetration of WMA asphalt binder obviously. The most reduced rate of penetration is 22.7 % for SK base asphalt binder; (4) The WMA additives increased the softening point of WMA asphalt binders, except for the case with 0.6 % Evotherm. The effect of adding 2% Sasobit on the softening point of asphalt binders is the most significant, while the effect of adding 0.6 % Evotherm is the least; (5) adding 0.6 % Evotherm increased the ductility of warm asphalt binders by 28.6 %, while adding 2 % Sasobit reduced the ductility of warm asphalt binders obviously.

Author(s):  
Panos Apostolidis ◽  
Xueyan Liu ◽  
Martin van de Ven ◽  
Sandra Erkens ◽  
Tom Scarpas

Epoxy modification of asphalt binders has been recognized as a very effective technology to alter the chemistry of asphaltic materials in such a way that long-lasting pavement structures can be designed. However, the phenomena that are involved to build up the physico-mechanical properties of epoxy asphalt systems are still unknown. The focus of this paper is on understanding the link between chemistry and the mechanical properties of epoxy asphalt binders during the thermo-irreversible process of chemical hardening. For this purpose, a constitutive model for predicting the evolution of cure-induced stresses in epoxy asphalt binders is proposed, and an experimental program was developed to determine the model parameters. The cure dependency of physico-mechanical parameters of modified binder was obtained and imported into the model to simulate the build-up of material properties during (non-)isothermal hardening of epoxy asphalt binder. The model is implemented in a commercially finite element tool by coupling the chemical, thermal, and mechanical phenomena with multi-physics strategies, and the results are analyzed to identify the influence of different heating conditions on the crosslinking density and subsequently on stress build-up. It was found that the amount of stress build-up during curing was strongly dependent on the heating conditions, and a higher rate of stress build-up was observed at higher applied temperatures. In other words, the processing conditions during in-plant material production or in-field manufacturing of structures made by epoxy asphalt systems affect the material hardening and subsequently the desired functionalities of pavement structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Nonde Lushinga ◽  
Liping Cao ◽  
Zejiao Dong ◽  
Chen Yang ◽  
Cyriaque O. Assogba

This research was conducted to elucidate better understanding of the performance of crumb rubber asphalt modified with silicone-based warm mix additives. Two different silicone-based warm mix asphalt (WMA) additives (herein Tego XP and Addibit) were used to prepare crumb rubber modified (CRM) warm mix asphalt binders. The viscosity of these CRM binders was measured at different temperatures and shearing rates. Furthermore, softening point and penetration tests, Multiple Stress Creep Recovery (MSCR), Time Sweep (TS), Atomic Force Microscopy (AFM), Frequency sweep (FS), and Fourier Transform Infrared (FTIR) tests were also conducted on prepared samples. Based on these robust and rigorous laboratory experiments, it was established that viscosity of CRM binders was reduced by addition of Tego XP and Addibit WMA additives. However, WMA additives had different influence on rheological properties of the binder. CRM binder with Tego XP improved resistance to rutting of the binders but would degrade the fatigue performance. On the contrary, viscoelastic continuum damage (VECD) model results and those of phase angle approach revealed that the binder with Addibit improved resistance to fatigue cracking of the binders but had no adverse effects on high temperature rutting performance. FTIR test results established a presence of polydimethylsiloxane (PDMS) in CRM binders with Tego XP and Addibit. PDMS is a well-known hydrophobic organic and inorganic polymer that is water repellent; therefore, binders containing these silicone-based warm mix additives could be beneficial in resisting moisture damage in asphalt binders and mixtures. Morphology of CRM binders with and without WMA revealed good distribution of the rubber particles in asphalt binder matrix. Further addition of WMA increased surface roughness of the binder, which can be correlated to changes in microstructure properties of the binder. Therefore, the study concluded that addition of Tego XP and Addibit reduces viscosity and improves mechanical properties of the asphalt binder.


2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Rosnawati Buhari ◽  
Nur Fareesya Zabidi ◽  
Mohd Ezree Abdullah ◽  
Siti Khatijah Abu Bakar ◽  
Nurul Hidayah Mohd Kamarudin

The objectives of this study were to determine the blending parameters of coconut shell powder (CSP) modified asphalt binder and to evaluate the rheological properties of CSP modified asphalt binder. CSP of 2%, 4%, 6%, 8% and 10% by weight of asphalt have been incorporated into an unaged 80/100 asphalt mix in order to improve its performance. The influence of the additives on the physical and rheological properties was evaluated with penetration test, softening point, storage stability, dynamic shear rheometer test (DSR), and Field Emission Scanning Electron Microscope (FESEM). The aging of asphalt binders was simulated in a laboratory by using Rotational Thin Film Oven (RTFO). The results showed that the addition of CSP into virgin binder was decreasing the penetration value and increasing the softening point temperature compared to the original binder. On the rheological effect, for unaged modified binder, higher CSP resulted higher G*/sin δ especially at lower temperature compared to the unaged control binder. Besides, for the aged modified binder, stiffness was lower than the control aged binder for all temperature.


2012 ◽  
Vol 535-537 ◽  
pp. 1686-1692
Author(s):  
Yong Chun Qin ◽  
Sui Yuan Wang ◽  
Wei Zeng ◽  
Xiao Pei Shi ◽  
Jian Xu ◽  
...  

One of the main benefits advertised with the use of warm mix asphalt (WMA) is the decreasing aging of the asphalt binder resulting from the lower production temperature compared to conventional hot mix asphalt (HMA). Some tests were performed to determine the asphalt binder aging properties from WMA and HMA. Asphalt binders were recovered by extraction and distillation from asphalt mixtures premixed at different temperatures (140°C, 160°C, 180°C for HMA, 100°C and 120°C for WMA) in the mixing plant. Penetration@25°C, softening point (R&B) and rotational Brookfield viscosity tests were carried out. Results show that the aging of asphalt binder increases as the mixing temperature is elevated, and remarkably accelerates at the temperatures higher than 150°C. Warm mix asphalt (for example, mixing temperature at 100°Cor 120°C) can greatly reduce the aging of asphalt. Aging of the asphalt binder is one of the factors that would affect the mixture’s fatigue life. Four-point beam fatigue test samples were mixed and compacted at 140°C for HMA and 120°C for WMA, and fatigue tests with a frequency of 10 Hz and three constant strain levels (150 micro-strain, 300 micro-strain, 450 micro-strain, respectively) were performed. Results show that WMA’s fatigue life was higher than the control HMA, which indicates that it may reduce aging of asphalt binder and improve fatigue performance of asphalt mixture at lower production temperatures.


2011 ◽  
Vol 71-78 ◽  
pp. 1062-1067 ◽  
Author(s):  
Zhen Gang Feng ◽  
Jian Ying Yu ◽  
Heng Long Zhang ◽  
Dong Liang Kuang

The modified asphalt binders with various anti-ageing additives, including ultraviolet (UV) absorber, antioxidant and combination of them, were prepared, and the effects of UV absorber contents, antioxidant contents and combination of UV absorber and antioxidant on physical properties and ageing characteristics of the asphalt binder were investigated. Results show that the ductility of asphalt binder increases whereas the softening point and viscosity decrease with addition of anti-ageing additives. UV absorbers and antioxidants exhibit different influences on the ageing properties of asphalt binder. The thermal- and photo-oxidative ageing performance of asphalt binder can be simultaneously improved by the compound modification with UV absorber and antioxidant. The combination of UV326 and antioxidant 1010 shows synergistic effect in preventing the asphalt binder from thermal- and photo-oxidative ageing, which contributes to excellent ageing resistance of modified asphalt binder.


2018 ◽  
Vol 250 ◽  
pp. 02004
Author(s):  
Khairul Nizam Mohd Yunus ◽  
Mohd Ezree Abdullah ◽  
Mohd Khairul Ahmad ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
Haniffah Tami

The main objectives of this work were to investigate the physical and rheological properties of nano zinc oxide (NaZO) flake structure as a modifier in asphalt binder. NaZO was produced with hydrothermal method by using two precursors, which are zinc nitrate and sodium hydroxide. NaZO was mixed with virgin binder 60/70 penetration grade at 3%, 5% and 7% of asphalt binder weight, respectively. The physical properties were evaluated by conventional testing, such as penetration, softening point and viscosity. Meanwhile, the rheological property, such as rutting resistance, was measured by using a dynamic shear rheometer (DSR) for unaged and rolling thin film oven (RTFO) aged. It was observed that the penetration value was decreased and the softening point increased with increasing NaZO concentrations. In addition, the rutting resistance factor was increased for the modified binder. A comparison between the modified binder, 7% NaZO, showed a greater resistance to rutting before and after aging. Results of this study showed that the NaZO addition had increased the asphalt binder stiffness ; thus, could contribute to better resistance to permanent deformation.


2013 ◽  
Vol 646 ◽  
pp. 90-96 ◽  
Author(s):  
Aboelkasim Diab ◽  
Zhan Ping You ◽  
Hai Nian Wang

Two Nano Hydrated Lime (NHL) materials with particle sizes of 50 nm and 100 nm were used in this study to investigate to the effect of NHL modification on the creep and recovery of Warm Mix Asphalt (WMA) binders foamed using Advera® with respective to rutting. The NHL was added to the asphalt binder at ratios of 20%, 10%, and 5% by weight of the asphalt binder. The creep and recovery tests were performed at three different stress levels, 3Pa (creep for 100 sec. and 600 sec. recovery), 10Pa (creep for 20 sec. and 600 sec. recovery), and 50Pa (creep for 1 sec and 300 sec. recovery). The tests were performed at a temperature of 58oC. The results were also compared with the Regular Hydrated Lime (RHL) results. The overall results reveal that the neat asphalt binders foamed using advera® showed larger permanent deformation (rutting) potential compared to the binder modified with RHL and NHL foamed using Advera®. As the NHL dose increases, the non-recoverable compliance decreases (rutting decreases). It was also concluded that the application of the RHL with the normal dose (20% by weight of binder) can be replaced by adding 5% (by weight of binder) of 50 nm NHL with respective to rutting.


2020 ◽  
Vol 17 (2) ◽  
pp. 1040-1043 ◽  
Author(s):  
Nur Shahira Samsuri ◽  
Norhidayah Abdul Hassan ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
Mohd Rosli Hainin ◽  
Mohd Ezree Abdullah ◽  
...  

This research examines the impacts of adding various source and percentages of waste engine oil (WEO) on the physical and rheological characteristics of asphalt binder comprising aged asphalt binder. A base asphalt binder with penetration grade of 80/100 and aged binder were blended with three sources of WEO at 0%, 5%, 10%, 15%, and 20% by the weight of asphalt binder. These oils were collected from light vehicle (motorcycle), heavy vehicle (lorry), and heavy machinery (tractor). Penetration and softening point procedures were done to define the physical properties of the unmodified and modified asphalt binders. Meanwhile, the rheological property was evaluated with a dynamic shear rheometer (DSR). The results show that the high percentages of WEO increased the penetration and decreased the softening point. The addition of 15% and 20% of WEO especially from heavy machinery reduced the rutting resistance. Therefore, it is recommended that the modification of aged binder with these types of WEO should be up to 10%.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Ahmad Nazrul Hakimi Ibrahim ◽  
Nur Izzi Md. Yusoff ◽  
Norliza Mohd Akhir ◽  
Muhamad Nazri Borhan

This study was conducted to investigate the physical properties and storage stability of the 80/100 penetration grade asphalt modified with geopolymer. In this research, fly ash and alkali activators, namely sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), were used as geopolymer components. The penetration, Ring and Ball softening point, ductility, and viscosity tests were conducted to determine the physical properties of geopolymer modified asphalt (GMA). Five samples of asphalt binders with varying percentages of geopolymer, namely 0, 3, 5, 7 and 9%, by weight of asphalt binder were studied. Results show that geopolymer has good compatibility with asphalt binder. The addition of geopolymer into asphalt binder resulted in improved permanent deformation resistance of the modified binder compared to that of the conventional asphalt. In conclusion, geopolymer could be considered as a potential alternative in the modification of the properties of asphalt binder.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 920 ◽  
Author(s):  
Fuquan Ma ◽  
Xue Luo ◽  
Zhiyi Huang ◽  
Jinchang Wang

The recovery property of asphalt binders plays an important role in the performance and service life of asphalt pavements. Since the internal stress is the driving force for the recovery of asphalt binders, the accurate measurement of the internal stress is full of significance. Based on this rationale, this paper aims to measure the internal stress of asphalt binders using a creep and step-loading recovery (CSR) test and characterizing the recovery behaviors by the internal stress. One base asphalt binder and one styrene–butadiene–styrene (SBS)-modified binder are selected in this study. The key elements of the CSR test are carefully designed and its accuracy is verified in three aspects, including the loading conditions, the effect of disturbance by step-loads, and accuracy of measured internal stress. Then, a kinetics-based recovery model is proposed to evaluate and predict the recovery properties of asphalt binders from its causal relationship. The constant-rate recovery activation energy indicates a major difference with nondestructive and destructive loading conditions, while the fast-rate recovery activation energy keeps almost constant regardless of the loading conditions. After that, the healing activation energy is calculated by using the kinetics-based recovery model and the results indicate that SBS modified asphalt binder shows better healing abilities than a base binder.


Sign in / Sign up

Export Citation Format

Share Document