Genetic analysis of grain yield and physiological traits of hybrid maize cv. SC704 under full and water deficit irrigation conditions

Author(s):  
Mozhgan Shirinpour ◽  
Ali Asghari ◽  
Ehsan Atazadeh ◽  
Saeid Aharizad ◽  
Ali Rasoulzadeh
2014 ◽  
Vol 38 (4) ◽  
pp. 719-732 ◽  
Author(s):  
PK Sarkar ◽  
MSU Talukder ◽  
SK Biswas ◽  
A Khatun

Timing and the extent of water deficit were studied in a field experiment on wheat (cv. Shatabdi) for three consecutive years from 2003-04 through 2005-06 at Jamalpur area. The effects of number and timing of irrigation application on yields were investigated under variable soil moisture condition in the root zone of different treatments. Eight deficit irrigations, including one no stress and one rainfed treatments were selected to subject the crop to various degrees of soil water deficit at different stages of crop growth. Measured amount of irrigation water was applied as per schedule prescribed for a particular treatment. Grain yield (GY), biomass, harvest index (HI), and water productivity (WP) were reasonably affected by deficit irrigation. Other yield contributing parameters like 1000-grain weight, grains/spike and spike, length were also affected by different levels of deficit irrigation. During grain formation stage, water deficit did not affect the grain yield but saved water significantly. Such water deficit treatments also shortened the grain maturation period. Differences in grain and straw yield among the stressed and no stress treatments are comparatively small, and statistically insignificant in some cases. The highest water productivity (2.02 kg/m3) was observed in treatment which was irrigated only once at crown root initiation stage (T2) although the yield was comparatively low. The CRI (crown root initiation) stage was found the most sensitive to water stress. Water stress at vegetative stage also reduced the yield considerably. DOI: http://dx.doi.org/10.3329/bjar.v38i4.19663 Bangladesh J. Agril. Res. 38(4): 719-732, December 2013


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 371 ◽  
Author(s):  
Isabella Mendonça Arruda ◽  
Vânia Moda-Cirino ◽  
Alessandra Koltun ◽  
Douglas Mariani Zeffa ◽  
Getúlio Takashi Nagashima ◽  
...  

Water stress is one of the main limiting factors for common bean crops, negatively affecting grain yield and seed quality. Thus, the objective of this study was to evaluate the inheritance of agromorphological and physiological traits related to drought tolerance in order to identify promising combinations. The experiment was carried out in a greenhouse with a partial diallel scheme between three drought-tolerant genotypes (IAPAR 81, BAT 477. and SEA 5), and nine cultivars widely grown in Brazil (BRS Estilo, IAC Alvorada, IPR Campos Gerais, IPR Uirapuru, IPR Nhambu, BRS Esteio, IPR Garça, BRS Radiante, and DRK 18), in a randomized block design with four replicates. The plants were grown in pots with substrate under 80% of pot capacity until they reached the stage R5, when water supply was restricted to 30% for 20 days in the pots under stress treatment. A wide variability for the agromorphological and physiological traits was observed. Water deficit reduced plant performance for most agromorphological traits and altered their physiological metabolism. Additive and non-additive effects are involved in the genetic control of the majority of agromorphological and physiological traits both under water stress and control (well-watered) conditions. The parental genotypes BAT 477 (group I) and IAC Alvorada, IPR Uirapuru, and BRS Esteio (group II) may be included in breeding programs aiming at improving drought tolerance in common bean since they present high positive general combining abilities for agromorphological traits. The crosses IAPAR 81 × IPR Campos Gerais, and SEA 5 × BRS Radiante resulted in the best combinations considering grain yield per plant and total dry biomass, when cultivated under water deficit.


2018 ◽  
Vol 69 (6) ◽  
pp. 594 ◽  
Author(s):  
Goudarz Ahmadvand ◽  
Somayeh Hajinia

Piriformospora indica is one of the cultivable root-colonising endophytic fungi of the order Sebacinales, which efficiently promote plant growth, uptake of nutrients, and resistance to biotic and abiotic stresses. The aim of this study was to evaluate the effect of P. indica on millet (Panicum miliaceum L.) under water-stress conditions. Two field experiments were carried out in a factorial arrangement at Bu-Ali Sina University of Hamedan, Iran, during 2014 and 2015. The first factor was three levels of water-deficit stress, with irrigation after 60 mm (well-watered), 90 mm (mild stress) and 120 mm (severe stress) evaporation from pan class A. The second factor was two levels of fungus P. indica: inoculated and uninoculated. Results showed that water-deficit stress significantly decreased grain yield and yield components. Colonisation by P. indica significantly increased number of panicles per plant, number of grains per panicle and 1000-grain weight, regardless of water supply. Inoculation with P. indica increased grain yield by 11.4% (year 1) and 19.72% (year 2) in well-watered conditions and by 35.34% (year 1) and 32.59% (year 2) under drought stress, compared with uninoculated plants. Maximum flag-leaf area (21.71 cm2) was achieved with well-watered conditions. Severe water stress decreased flag-leaf area by 53.36%. Flag-leaf area was increased by 18.64% by fungus inoculation compared with the uninoculated control. Under drought conditions, inoculation with P. indica increased plant height by 27.07% and panicle length by 9.61%. Severe water stress caused a significant decrease in grain phosphorus concentration, by 42.42%, compared with the well-watered treatment. By contrast, grain nitrogen and protein contents were increased about 30.23% and 30.18%, respectively, with severe water stress. Inoculation with P. indica increased grain phosphorus by 24.22%, nitrogen by 7.47% and protein content by 7.54% compared with control. Water stress reduced leaf chlorophyll and carotenoid concentrations, whereas P. indica inoculation enhanced chlorophyll concentrations by 27.18% under severe water stress. The results indicated the positive effect of P. indica on yield and physiological traits of millet in both well-watered and water-stressed conditions.


Euphytica ◽  
2019 ◽  
Vol 215 (10) ◽  
Author(s):  
L. Gabriela Abeledo ◽  
Santiago Alvarez Prado ◽  
Laura E. Puhl ◽  
Yaopeng Zhou ◽  
Jose M. Costa ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 1-20
Author(s):  
Ali Akbar Asadi ◽  
◽  
Mostafa Valizadeh ◽  
Seyed Abolghasem Mohammadi ◽  
Manochehr Khodarahmi ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 844-851 ◽  
Author(s):  
Heng Jia Zhang ◽  
Jun Hui Li

A field trial was conducted in 2007 and 2008 to investigate the difference in soil nutrients and grain yield of spring wheat (Triticum aestivum) as influenced by regulated deficit irrigation (RDI) in an arid area. Three RDI treatments and a no-water-deficit control (CK) were designed to subject wheat to various degrees of soil water deficit at different crop developmental stages. Significant differences (p<0.05) occurred in soil organic matter (SOM) and soil available potassium (SAK) contents in both growing seasons, but no difference (p>0.05) occurred among the RDI treatments. Meanwhile, no differences were found in soil total nitrogen (STN) and soil total phosphorus (STP) contents among the treatments and CK. SOM content was improved by 6.2% to 7.2% in RDI treatments than in the CK over the two growing seasons, while the STN, STP, and SAK contents were increased by 1.2% to 2.5%, 1.4% to 5.6%, and 9.0% to 11.2%, respectiely. The STP (t=10.900, p<0.001), soil available phosphorus (SAP, t=8.894, p<0.001), and SAK (t=11.706, p<0.001) contents in 0~40 cm soil layer at wheat harvest were significantly lower in 2008 than in 2007, while the SOM (t=-2.513, p<0.05) and STN (t=-9.950, p<0.001) contents were significantly higher in 2008. Soil organic C, STN, and SAP balance was greatly influenced by RDI in two growing seasons. Compared to the no-water-deficit control, grain yields over the two years were respectively improved by 16.5% to 24.9% in RDI plots.The relationship between grain yield and the soil nutrients was described as y=15843.4 +713.3SOM-20989.1STN+38.7SAN-15.0SAP-39.7SAK (R2=1, p<0.001).


2016 ◽  
Vol 29 (2) ◽  
pp. 177 ◽  
Author(s):  
R Shiv Ramakrishnan ◽  
PH Ghodke ◽  
S Nagar ◽  
R Vinoth ◽  
B Kumar ◽  
...  

2005 ◽  
Vol 85 (4) ◽  
pp. 829-837 ◽  
Author(s):  
Bu-Chong Zhang ◽  
Feng-Min Li ◽  
Gao-Bao Huang ◽  
Yantai Gan ◽  
Pu-Hai Liu ◽  
...  

Grain yield and water use efficiency (WUE) of spring wheat ( Triticum aestivum L.) in arid environments can be improved by applying irrigation selectively to allow soil water deficits to develop at non-critical stages of crop development. Field experiments were conducted on a loam soil in Zhangye district, northwest China in 2003 and 2004 to determine the grain yield, yield components, and water use characteristics of spring wheat in response to regulated deficit irrigation (RDI) schemes. Wheat grown under the RDI schemes produced 17% (in 2004) and 29% (in 2003) higher grain yield than wheat grown under water deficit-free control (5.6 t ha-1 in 2003 and 6.2 t ha-1 in 2004). Among six RDI schemes studied, wheat having a high water deficit at the jointing stage, but free from water def icit from booting to grain-filling produced highest grain yield in both 2003 (7.95 t ha-1) and 2004 (7.26 t ha-1). Compared with the control, wheat plants grown under the RDI schemes received 59 mm (or 15%) less water via irrigation, but they either extrac ted 41 mm more (or 74%) water from the soil profile (in 2003) or lowered (16%) evapotranspiration (ET) (in 2004). Grain yield increased as ET increased from 415 to 460 mm, and declined beyond 460 mm. The WUE values varied from 0.0116 to 0.0168 t ha-1 mm-1, and wheat grown under the RDI had 26% greater WUE compared with the control. Grain yield and WUE of spring wheat can be greatly improved by regulated deficit irrigation with reduced amounts of water. This practice is particularly valuable in arid regions where wheat production relies heavily on irrigation. Key words:


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 148
Author(s):  
Minghui Cheng ◽  
Haidong Wang ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Xiukang Wang

To investigate the effects of alternate partial root-zone irrigation (APRI) and water deficit at different growth stages on maize growth, physiological characteristics, the grain yield, and the water use efficiency (WUE), a pot experiment was conducted under a mobile automatic rain shelter. There were two irrigation methods, i.e., conventional irrigation (CI) and APRI; two irrigation levels, i.e., mild deficit irrigation (W1, 55%~70% FC, where FC is the field capacity) and serious deficit irrigation (W2, 40%~55% FC); and two deficit stages, i.e., the seedling (S) and milking stage (M). Sufficient irrigation (W0: 70%~85% FC) was applied throughout the growing season of maize as the control treatment (CK). The results indicated that APRI and CI decreased the total water consumption (ET) by 34.7% and 23.8% compared to CK, respectively. In comparison to CK, APRI and CI increased the yield-based water use efficiency (WUEY) by 41% and 7.7%, respectively. APRI increased the irrigation water efficiency (IWUE) and biomass-based water use efficiency (WUEB) by 8.8% and 25.5% compared to CK, respectively. Additionally, ASW1 had a similar grain yield to CK and the largest harvest index (HI). However, the chlorophyll and carotenoid contents were significantly reduced by 13.7% and 23.1% under CI, and by 11.3% and 20.3% under APRI, compared to CK, respectively. Deficit irrigation at the milking stage produced a longer tip length, resulting in a lower grain yield. Based on the entropy weight method and the technique for order preference by similarity to an ideal solution (TOPSIS) method, multi-objective optimization was obtained when mild deficit irrigation (55%~70% FC) occurred at the seedling stage under APRI.


Sign in / Sign up

Export Citation Format

Share Document