Experimental investigation of the flame stability limits for H2 + C3H8, H2 + C2H6 and H2 + CH4 jet flames

Author(s):  
Zine labidine Messaoudani ◽  
Mahar Diana Hamid ◽  
Yajue Wu ◽  
Che Rosmani Che Hassan
2019 ◽  
Vol 13 (3) ◽  
pp. 5278-5293
Author(s):  
Vipul Patel ◽  
Rupesh Shah

The present research aims to analyse diffusion flame in a tube type burner with Liquefied petroleum gas (LPG) as a fuel. An experimental investigation is performed to study flame appearance, flame stability, Soot free length fraction (SFLF) and CO emission of LPG diffusion flame. Effects of varying air and fuel velocities are analysed to understand the physical process involved in combustion. SFLF is measured to estimate the reduction of soot. Stability limits of the diffusion flame are characterized by the blowoff velocity. Emission characteristic in terms of CO level is measured at different equivalence ratios. Experimental results show that the air and fuel velocity strongly influences the appearance of LPG diffusion flame. At a constant fuel velocity, blue zone increases and the luminous zone decreases with the increase in air velocity. It is observed that the SFLF increases with increasing air velocity at a constant fuel velocity. It is observed that the blowoff velocity of the diffusion flame increases as fuel velocity increases. Comparison of emission for flame with and without swirl indicates that swirl results in low emission of CO and higher flame stability. Swirler with 45° vanes achieved the lowest CO emission of 30 ppm at Φ = 1.3.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879087 ◽  
Author(s):  
Yinli Xiao ◽  
Zhibo Cao ◽  
Changwu Wang

The objective of this study is to gain a fundamental understanding of the flow-field and flame behaviors associated with a low-swirl burner. A vane-type low-swirl burner with different swirl numbers has been developed. The velocity field measurements are carried out with particle image velocimetry. The basic flame structures are characterized using OH radicals measured by planar laser-induced fluorescence. Three combustion regimes of low-swirl flames are identified depending on the operating conditions. For the same low-swirl injector under atmospheric conditions, attached flame is first observed when the incoming velocity is too low to generate vortex breakdown. Then, W-shaped flame is formed above the burner at moderate incoming velocity. Bowl-shaped flame structure is formed as the mixture velocity increases until it extinct. Local extinction and relight zones are observed in the low-swirl flame. Flow-field features and flame stability limits are obtained for the present burner.


2015 ◽  
Vol 35 (2) ◽  
pp. 1157-1166 ◽  
Author(s):  
Ankit Bhagatwala ◽  
Zhaoyu Luo ◽  
Han Shen ◽  
Jeffrey A. Sutton ◽  
Tianfeng Lu ◽  
...  

Author(s):  
Mokhles Tawfeeq AbdulAmeer ◽  
Haroun A.K. Shahad ◽  
Samer Mohammed AbdulHaleem

Author(s):  
L. Bellamy ◽  
C. H. Barron ◽  
J. R. O’Loughlin

Flame stability limits produced by a reverse-jet flameholder are experimentally studied with a chemical inhibitor added to the gas stream issuing from the reverse-jet. The result of this addition is a reduction of flame stability limits. Such a reduction indicates the importance of the chemical rate processes in the flameholding phenomenon.


Author(s):  
Seyed Mohammad Hashemi ◽  
Seyed Abdolmehdi Hashemi

Combustion process of the premixed methane–air in a novel combined porous-free flame burner was investigated numerically. Two-dimensional model considering nonequilibrium thermal condition between the gas and solid phases was used and the combustion was simulated using reduced GRI 3.0 multistep chemical kinetics mechanism. To examine the validity of the implemented numerical model, the burner was manufactured and tested. Good agreement between the numerical results and experimental data were observed. Thermal flame thickness, flame stability limit, and thermal efficiency were discussed. Multimode heat transfer in the porous medium including convection, radiation, and conduction were quantified and perused. Results showed that the thermal thickness of laminar free flame established in the perforated portion of the burner was considerably less than thickness of submerged flame stabilized in the porous medium. Predicted results suggested that the flame stability limit was augmented in the combined burner compared to the burner with full porous foam. Analyses of the heat balance showed that the thermal efficiency of the combined porous-free flame burner was less than thermal efficiency of the full porous burner. Comparison of the full porous burner with the novel combined porous-free flame burner demonstrated that the combined burner caused higher stability limits and lower thermal efficiencies.


Author(s):  
Wei Fu ◽  
Fengyu Li ◽  
Haitao Zhang ◽  
Bolun Yi ◽  
Yanju Liu ◽  
...  

The objective of this paper is to investigate the flame structure and liftoff behaviors of a dimethyl ether central jet in CH4/air vitiated coflow in a coflow burner. The liftoff behaviors of dimethyl ether jet flames in the air flow were studied firstly. The flame stability of the burner was analyzed by measuring the flow field temperature with thermocouples. By changing the coflow rate and CH4 equivalence ratio, the liftoff behaviors of dimethyl ether jet flames under different vitiated coflow environments were discussed. The jet flame structure was also analyzed qualitatively by high-speed photography.


Sign in / Sign up

Export Citation Format

Share Document