scholarly journals The technical impacts of the carbon tax in China

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shuyang Chen

AbstractDespite the significant impacts of technology on the socioeconomic effects of climate policies, many previous researchers neglected the induced technical impacts and thus resulted in biased evaluations of climate policies. Hence, it is important that the induced technology should be endogenized in the policy evaluation framework. The purpose of this paper is the quantification of the technical impacts of the Chinese carbon tax using a Computable General Equilibrium (CGE) model. The technical impacts are denoted by the induced technological change (ITC), which is a function of the energy-use efficiency (EUE), energy-production efficiency (EPE), and nonenergy-production efficiency (ENE). The carbon tax will increase the energy cost share because of the internalisation of the abatement costs. This paper empirically shows that the carbon tax will decrease the energy cost share and production efficiency but increase the energy use and nonenergy production efficiency. Under the carbon tax, the ITC will decrease the energy use and production efficiency but increase the nonenergy production efficiency. The ITC will increase the RGDP, decrease the household welfare, and increase the average social cost of carbon (ASCC). This finding implies that the ITC of the carbon tax is biased towards the technical progress of nonenergy sectors; the emission abatement will become costlier under the ITC impacts. Although the quantification method of the technical impacts was from an existing published paper, the CGE analysis of the ITC impacts of the carbon tax in China is original in this paper.

2021 ◽  
Author(s):  
Shuyang Chen

Abstract Despite the significant impacts of technology on the socioeconomic effects of climate policies, many previous researchers neglected the induced technical impacts and thus resulted in biased evaluations of climate policies. Hence, it is important that the induced technology should be endogenized in the policy evaluation framework. In this paper, I attempt to use a Computable General Equilibrium (CGE) model to quantify the technical impacts of the Chinese carbon tax. The technical impacts are denoted by the induced technological change (ITC), which is a function of the energy-use efficiency (EUE), energy-production efficiency (EPE), and nonenergy-production efficiency (ENE). The carbon tax will increase the energy cost share because the of the internalisation of the abatement costs. This paper empirically shows that the carbon tax will decrease the energy cost share and production efficiency but increase the energy use and nonenergy production efficiency. Overall, the carbon tax will promote the technological development, compared to the baseline scenario. In addition to the policy effects of the tax, the ITC will decrease the energy use and production efficiency but increase the nonenergy production efficiency. The ITC will increase the RGDP, decrease the household welfare, and increase the average social cost of carbon (ASCC). To summarise, despite that the carbon tax will decrease the welfare at the country and household level, the ITC of the carbon tax will increase the welfare at the country level but decrease the welfare at the household level. Under the ITC impacts, the emission abatement will become costlier.


2021 ◽  
Vol 13 (12) ◽  
pp. 6749
Author(s):  
Shuyang Chen

In the literature, very few studies have focused on how urbanisation will influence the policy effects of a climate policy even though urbanisation does have profound socioeconomic impacts. This paper has explored the interrelations among the urbanisation, carbon emissions, GDP, and energy consumption in China using the autoregressive distributed lag (ARDL) model. Then, the unit urbanisation impacts are inputted into the policy evaluation framework of the Computable General Equilibrium (CGE) model in 2015–2030. The results show that the urbanisation had a positive impact on the GDP but a negative impact on the carbon emissions in 1980–2014. These impacts were statistically significant, but its impact on the energy consumption was not statistically significant. In 2015–2030, the urbanisation will have negative impacts on the carbon emissions and intensity. It will decrease the GDP and the household welfare under the carbon tax. The urbanisation will increase the average social cost of carbon (ASCC). Hence, the urbanisation will reinforce the policy effects of the carbon tax on the emissions and welfare.


Author(s):  
Rawad El Kontar ◽  
Xin Jin

Abstract Optimizing the placement of photovoltaic (PV) panels on residential buildings has the potential to significantly increase energy efficiency benefits to both homeowners and communities. Strategic PV placement can lower electricity costs by reducing the electricity fed from the grid during on-peak hours, while maintaining PV panel efficiency in terms of the amount of solar radiation received. In this article, we present a framework that identifies the ideal location of PV panels on residential rooftops. Our framework combines energy and environmental simulation, parametric modeling, and optimization to inform PV placement as it relates to and affects the entire community (in terms of both energy use and financial cost), as well as individual buildings. Ensuring that our framework accounts for shading from nearby buildings, different utility rate structures, and different buildings’ energy demand profiles means that existing communities and future housing developments can be optimized for energy savings and PV efficiency. The framework comprises two workflows, each contributing to optimal PV placement with a unique target: (a) maximizing PV panel efficiency (i.e., solar generation) and (b) minimizing operational energy cost considering utility rate structures for operational energy. We apply our framework to a residential community in Fort Collins, Colorado, to demonstrate the optimal PV placement, considering the two workflow targets. We present our results and illustrate the effect of PV location and orientation on solar energy production efficiency and operational energy cost.


Author(s):  
Adriana Marcucci ◽  
Lin Zhang

Abstract This paper studies the growth impacts of realizing two long-term carbon targets in Switzerland (reducing CO2 emissions in 2050 by 72% and 80% relative to 1990 levels) with alternative steering-based climate policies that include a uniform tax on the whole economy and differentiated tax schemes. For this analysis, we use the Computable Induced Technical change and Energy (CITE) model, a computable general equilibrium (CGE) model with endogenous growth. We find that achieving the climate targets could lead to a slight decrease in utility and an increase in investments through the shift of labor from manufacturing to research. Higher investments coming from higher innovation could compensate the reduction in output due to the carbon policies, leading to relatively unaffected economic output. The economic structure adjusts following three drivers: energy intensity, substitutability from energy in the production of the intermediate varieties, and the relative attractiveness of research. Moreover, the results from the CITE model show that the economy-wide carbon tax is the most effective option when we consider the effects on utility. Differentiating the sectors regulated by the emission trading system (ETS) has relatively low impact while applying lower taxes on transport fuels results in lower utility driven by inefficiencies in the sectoral mitigation efforts. Finally, we find that the effects of increasing the stringency of the target (in terms of foregone utility) are independent from the policy instrument.


2019 ◽  
Vol 11 (19) ◽  
pp. 5278 ◽  
Author(s):  
Zhang ◽  
Xu ◽  
He ◽  
Basil ◽  
Zhao ◽  
...  

A recursive multisector dynamic computable general equilibrium (DCGE) model simulates the economic impacts of carbon tariffs, as proposed by the USA, ranging from $40/t to $60/t CO2. We examine a carbon tax and export subsidy as response policies to the U.S. carbon tariff, respectively. The dynamic model shows the possible impacts of these policies on China’s economic structure, carbon emissions, and social welfare from 2020 to 2030. Simulations show that a carbon tariff changes the structure of China’s exports and promotes trade diversion from the USA to other countries and regions. A domestic carbon tax and subsidy policy can dampen the adverse impacts of carbon tariffs on trade. A carbon tax shows an effective impact on increasing clean energy use, decreasing the carbon intensity of output, and reducing carbon emissions. A subsidy on exports to the USA reduces the adverse impact of a carbon tariff on China’s social welfare in the short term.


2020 ◽  
Vol 21 (1) ◽  
pp. 31-39
Author(s):  
Gürkan Diken ◽  
Hayati Köknaroğlu ◽  
İsmail Can

The purpose of this study was to assess cultural energy (CE) use and energy use efficiency of a commercial small scale rainbow trout (Oncorhynchus mykiss) cage farm in the inland waters in Karacaören Dam Lake, Isparta, Turkey. Data collected for each production year were: number and total weight of fingerlings, amount of feed consumed, amount of antibiotics, vitamin, labor, diesel, oxygen used, number and total weight of marketed trout, distance for transportation of fingerlings, machinery, and equipment with their depreciation rate. Total CE use was the sum of CE expended on feed, general management, transportation, machinery, and equipment. CE expended on compound diet constituted 77.78% of total CE. CE expended for a kg of liveweight gain was 2.68 Mcal. Protein energy production efficiency in carcass and fillet was 4.28 and 7.44 Mcal, respectively. CE energy use efficiency for carcass and fillet were 4.19 and 6.85, respectively. Results showed that in order to compare the sustainability of aquaculture production systems energy use efficiency which is an indicator of sustainability should be determined.


Author(s):  
E. Sobhana ◽  
C. Swaminathan ◽  
P. Kannan ◽  
A. Gurusamy

Background: Conservation agriculture (CA), an agricultural production system with optimum inputs, high returns and sustainability while conserving environment is primarily required for command areas and rainfed uplands. CA helps to improve and conserve soil health through crop rotation, mulching, minimum field traffic and mechanical soil disturbance etc and conserve water to achieve economically and ecologically sustainable crop production. Methods: The field experiment was conducted for two years during 2019-21 to evaluate the influence of conservation agricultural practices on the system productivity, production efficiency and energy use under legume based cropping system in a command area. Treatments comprised of four cropping systems as Groundnut - foxtail millet (C1), Groundnut - barnyard millet (C2), Daincha - foxtail millet (C3) and Daincha - barn yard millet (C4) in main plots and foliar application of organics, 3% panchagavya, 1% PPFM and 0.1% humic acid formed subplots. Result: System productivity in terms of Groundnut equivalent yield (GEY) was significantly higher (8395 kg/ha) in the Groundnut - Barnyard millet cropping system with foliar application of PPFM 1% in CA system than that of conventional method. The production efficiency was maximum in Groundnut - barnyard millet system (34.41 kg/ha/day) and Groundnut - foxtail millet recorded the highest energy use efficiency (6.8%) which shows that maximum energy was effectively utilized under the system. Daincha - foxtail millet system had highest energy productivity of 0.91 kg M/J. Thus, the conservation tillage based Groundnut - barnyard millet system recorded more system productivity, highest resource use efficiency (both production and land use efficiency) and the highest energy use efficiency.


2020 ◽  
Vol 7 (01) ◽  
Author(s):  
ATIQUR RAHMAN

Solar energy use for groundwater abstraction is one of the most viable options for smallholders’ irrigation in current scenario of increasing fuel prices. Therefore, the dissemination and adoption of solar pumps of low capacities among these farmers is in demand. In this paper a case study was in eastern region to assess the performance of 3horsepower solar pump, as this capacity pump is currently being promoted by the governments to small farmers at subsidised rates. In eastern region where groundwater regime in most of the area is ranging5-10 m bgl with annual fluctuation of ±2 to ±4 m, and abstracted groundwater by a 3 horsepower solar pumpis rangedfrom 100-173 m3/day, depending upon the months on a bright day. Thispump also offers a delivery pressure head 1.0- 1.5 kg/cm2, and therefore facilitates pressured irrigation for improved water use efficiency.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4593
Author(s):  
Katarzyna Cheba ◽  
Iwona Bąk

The main purpose of the paper is to present a proposal to measure the relationships between Goal 7 of the 2030 Agenda for Sustainable Development and one of the areas considered in the green growth concept: environmental production efficiency. Both of these areas illustrate the relationship between the natural environment and the economy, emphasizing transformations in the field of energy use. Selected taxonomic methods, TOPSIS, and multicriteria taxonomy, were applied to study the relationships between the two areas. The results of the EU countries classification showed a variety of countries’ development pathways within a single economic community. Despite continued attempts to equalize the development levels between European Union countries in many strategic areas, they remain highly diversified. That is also true for the areas analyzed in the paper, which is a disturbing situation, indicating that both strategies might not correlate in all respects. Further research into the relationships linking the remaining dimensions of both strategies is required.


Sign in / Sign up

Export Citation Format

Share Document