scholarly journals Comparative geomorphometric approach to understand the hydrological behaviour and identification of the Erosion prone areas of a coastal watershed using RS and GIS tools

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Kuldeep Singh Rautela ◽  
Mohit Kumar ◽  
Varun Khajuria ◽  
M. A. Alam

AbstractAssessment of the geomorphometric parameters using Remote Sensing (RS) and Geographic Information System (GIS) tools forms an important part in routing the runoff and other hydrological processes. The current study uses a geospatial model based on geomorphometric parameters for the categorization of surface runoff and identification of the erosion-prone areas in the watershed of the Kuttiyadi River. The 4th order Kuttiyadi river is dominated by a dendritic to semi-dendritic drainage pattern in the subwatersheds. The linear aspect of the subwatersheds indicates towards the presence of permeable surface and subsurface materials with uniform lithology. The aerial and relief aspects of the subwatersheds shows fine drainage texture, gentle slopes, delayed peak flow, flatter hydrograph, and large concentration time which shows that subwatersheds are quite capable of managing flash floods during storm events. The estimated values of surface runoff (Q) and sediment production rate (SPR) are range from 2.13 to 32.88 km2-cm/km2 and 0.0004–0.017 Ha-m/100km2/year respectively and suggest that Subwatershed 1 (SW1) will generate more surface runoff and is prone to soil erosion followed by subwatershed 2 (SW2) in comparison to other subwatersheds. This paper aims to fill the knowledge gap regarding categorization of flow and erosion dynamics in a coastal river watershed. We believe that our work may work help in providing the crucial information for decision-makers and policymakers responsible for establishing suitable policies and sustainable land use practices for the watershed.

2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Biswajeet Pradhan

AbstractThis paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.


2021 ◽  
Author(s):  
Martin Le Mesnil ◽  
Jean-Baptiste Charlier ◽  
Roger Moussa ◽  
Yvan Caballero

<p>We propose a data-driven approach of concentration-discharge (C-Q) relationship analysis, including a new classification of C-Q hysteresis loop at the catchment scale, combined to a simulation of lateral Q and C at the reach scale. We analyse high-frequency, multiple-site records of Q and electrical conductivity (EC) in karst catchment outlets, in which EC informs on water residence time. At the catchment scale, contributions of pre-event water (PEW) and event water (EW) during storm events are investigated through hysteresis loops analysis, which allows inferring hydrological processes. Our new classification of hysteresis loops is based on loop mean slope and hysteresis index. At the reach scale, lateral Q and EC are simulated using a diffusive wave equation model, providing a more spatialized picture of PEW and EW contributions to streamflow during storm events. The methodology is applied to two catchments (Loue river and Cèze river) in France, including 8 gauging stations with hourly Q and EC time series covering 66 storm events.</p><p>For both catchments, a conceptual model of water origin and hydrological-processes seasonal and spatial variability is drawn. Regarding Loue catchment, summer and fall storm-events are characterized by contribution of PEW through piston-type flows, whereas decreasing EC values in winter and spring storm-events indicate the major contribution of EW through surface runoff and following fast infiltration in karst. EW contribution is increasing towards downstream. Regarding Cèze catchment, higher contributions of EW are observed, indicating that fast infiltration and surface runoff are the dominant processes, associated to a PEW signature in summer and fall. PEW contribution also increases in karstified areas. Intra-site water origin seasonality is mostly related to karst aquifer saturation state, whereas inter-site variability is linked to karst areas extension. These results are encouraging to extend this approach to a variety of sites, notably influenced by important surface water/groundwater interactions, and groundwater flooding.</p>


Author(s):  
E. S. Mohamed ◽  
Abdel-Aziz Belal ◽  
Mohamed Abu-hashim

Abstract Background Evaluation of surface runoff is an essential factor in the precision water and soil conservation management through their main extreme impacts on soil properties. The natural resource conservation service curve number model (NRCS-CN) model is used to estimate the magnitude of runoff. Collected topographic data is used to explain the effects of slope variation on water retention and surface runoff. Twenty-eight soil profiles are prepared in Nile delta, Egypt to cover different geomorphic units and hydrological soil groups in the study area. Results The results revealed that the highest value of surface runoff was distinguished close to the urban area and ranges between 40 and 50 mm. In urban areas, the surfaces are paved and there are no infiltration of water. Consequently, the runoff water directly flows to the storm channels. Runoff values ranging between 30 and 40 mm occurred at the north of the study area. The sloping surface and the nature of the clay soil contributed to generate more runoff than do lowland areas. Conclusion The study presented and tested the hydric runoff estimation based-model on the integrating of hydric balance parameters. The GIS tools analyze and compose these parameters to perform an indirect method for the quantity of water that results in direct surface runoff flow. This method helps to gain clear imaging of the surface runoff risks in the study area.


Author(s):  
Samuel M. Kinyanjui ◽  
Japheth O. Onyando ◽  
Raphael M. Wambua

Hydrological response of a catchment is a function of rainfall as influenced by catchment characteristics comprising geomorphology, land cover, and management practices. In this study, the analysis mainly focused on how geomorphological characteristics influence the catchment hydrological response. Geomorphological analyses of catchment geometry, stream patterns, relief, and slope can be used to characterize the catchment features that affect the drainage network. These characteristics are catchment specific and therefore unique to provide an insight into its hydrologic response. The objective of this research was to quantitatively analyze geomorphologic characteristics; linear, areal, drainage pattern, and relief aspect, of Amala River catchment, using ArcGIS tools and infer its hydrological behavior. The morphometry of the catchment was derived from the DEM within the ArcMap environment. These parameters as well as mathematical map equations were used to derive geomorphological characteristics such as bifurcation ratio, rho coefficient, drainage density, infiltration number, form factor among others. The results show that the Amala River catchment is elongated with uniform lithology and a higher probability of delayed peak hydrographs due to longer lag time and time of concentration. The catchment exhibits a dendritic drainage pattern with an average bifurcation ratio of 4.26 which is closer to the upper bound value of 5. This indicates a reduction in peak flows and a delayed time to peak. The surface runoff yield efficiency was low and non-uniform with an average drainage density of 1.073 km/km2. The catchment was characterized by higher infiltration characteristics as compared to surface flows, this varied spatially, with sub-basins far North of the outlet having high infiltration than those near the outlet. The catchment relief was characterized as steep and therefore high stream velocity was inferred. The investigation and findings of this study on catchment geomorphology and inferred hydrologic behavior will be of great importance in catchment management, water resource planning within the catchment, and water harvesting at a spatial scale. Thus, the outcomes provide a baseline for informed water pan and water harvesting structures site.


2020 ◽  
Vol 9 (5) ◽  
pp. 780-784
Author(s):  
Shanmukha Srinivas G ◽  
Satyanarayana Moorthy D V ◽  
Yaswanth Kumar Y ◽  
Jyothi P

2020 ◽  
Vol 3 (3) ◽  
pp. 73-89
Author(s):  
Muhammad Jasim Uddin ◽  
Md. Abu Hamjalal Babu ◽  
Md. Risadul Islam ◽  
Fahim Farzana ◽  
Most. Lata Khatun ◽  
...  

Morphometric analysis identifies the relationship of various aspects in the basin area, and plays an important role for understanding the geo-hydrological characteristics of a basin. The Karatoya River is ecologically and economically significant for Dinajpur region of Bangladesh. In this study, the morphometry of a sub-portion of Karatoya River in Birganj upazila was assessed by using GIS and remote sensing. The secondary data from ASTER DEM data and DEM data of Bangladesh were used to represent the morphologic and geo-hydrologic nature of the basin. The study computed and assessed more than 31 morphometric parameters in all aspects of the river basin. Morphometric analysis of the river network and the basin revealed that the Karatoya sub-basin was in the 6th order river network (as Strahler’s classification) with a dendritic and parallel drainage pattern and fine grain in drainage texture. This type of analysis will lead to develop the sustainable framework for agricultural and watershed management to be used by the local administration.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Farrukh Altaf ◽  
Gowhar Meraj ◽  
Shakil A. Romshoo

West Lidder River, in the Northwest Greater-Himalayan mountain range, is the major source of irrigation and drinking water supplies for the Kashmir Valley with a population of seven million people. The major source of water for the whole Lidder River is snow and icemelt emanating from its two subcatchments East Lidder and West Lidder. Snowmelt significantly contributes to the evolution of drainage patterns in this area. Quantitative morphometry plays a vital role in routing the snowmelt and other hydrological processes. Morphometric analysis of the West Lidder River catchment was carried out using geospatial technique. The outcome revealed that the entire study area has uniform lithology and is structurally permeable. The high drainage density of all subwatersheds indicate more surface runoff. The morphometric analysis also indicates that the area is more prone to weathering due to very-coarse to coarse drainage texture. All the subwatersheds showed dendritic to subdendritic drainage pattern. An immense control of structure on the drainage in some subwatersheds is indicated by their high bifurcation ratios. Circulatory and elongation ratios show that the subwatersheds have elongated to circular shapes. From the integrated analysis of the morphometric parameters, important hydrologic behaviour of 17 subwatersheds could be inferred.


Hydrology ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Walter Silva-Araya ◽  
Félix Santiago-Collazo ◽  
Juan Gonzalez-Lopez ◽  
Javier Maldonado-Maldonado

2007 ◽  
Vol 11 (4) ◽  
pp. 1515-1528 ◽  
Author(s):  
D. I. Kusumastuti ◽  
I. Struthers ◽  
M. Sivapalan ◽  
D. A. Reynolds

Abstract. The aim of this paper is to illustrate the effects of selected catchment storage thresholds upon runoff behaviour, and specifically their impact upon flood frequency. The analysis is carried out with the use of a stochastic rainfall model, incorporating rainfall variability at intra-event, inter-event and seasonal timescales, as well as infrequent summer tropical cyclones, coupled with deterministic rainfall-runoff models that incorporate runoff generation by both saturation excess and subsurface stormflow mechanisms. Changing runoff generation mechanisms (i.e. from subsurface flow to surface runoff) associated with a given threshold (i.e. saturation storage capacity) is shown to be manifested in the flood frequency curve as a break in slope. It is observed that the inclusion of infrequent summer storm events increases the temporal frequency occurrence and magnitude of surface runoff events, in this way contributing to steeper flood frequency curves, and an additional break in the slope of the flood frequency curve. The results of this study highlight the importance of thresholds on flood frequency, and provide insights into the complex interactions between rainfall variability and threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves.


2020 ◽  
Vol 60 (1) ◽  
pp. 154 ◽  
Author(s):  
Brian Levine ◽  
Lucy Burkitt ◽  
Dave Horne ◽  
Leo Condron ◽  
Chris Tanner ◽  
...  

Water-quality impairment due to excess nutrients entering Lake Rotorua has been recognised since the 1960s. So as to improve water-quality, the 2012 Lake Rotorua Nutrient Management Plan has set a target to reduce phosphorus (P) loads delivered to the lake by 10 t/year from a baseline of ~40 t P/year. Dissolved P and sediment-bound P loss from agriculture have been identified as significant sources of P entering the lake. Storm periods present significant opportunities to mitigate these losses. Detainment bunds (DBs) are a mitigation strategy that could potentially decrease P losses in storm events. A detainment bund is a low earthen dam constructed on productive pasture, which is capable of temporarily ponding large quantities of overland flow delivered by storm-generated ephemeral streams. Prior research on DBs and sedimentation basins serves as a proof of concept for the technology; however, there is no quantitative data available on the capacity of DBs to attenuate contaminants under New Zealand conditions. Quantification of DB performance is essential to the potential implementation of the technology at regional or national scales, and to the modelling of treatment efficacy in nutrient-management software such as OVERSEER®. The present study reports on preliminary data from a DB receiving surface runoff from 19.7 ha within the Lake Rotorua catchment during three contrasting storm events. The results indicated that retaining water in DBs resulted in discharges with decreased volumes of water and decreased concentrations of suspended sediments, dissolved reactive P and total P. Load attenuation related to event size and resulted in decreased loads of sediment (14–91%), dissolved reactive P (19–69%) and total P loads (18–67%) discharged downstream. These preliminary results indicated the potential of this mitigation strategy to decrease loads of sediment and P delivered to Lake Rotorua by surface runoff from pastoral agriculture.


Sign in / Sign up

Export Citation Format

Share Document