A critical test for the coherency strain energy as the driving force for the discontinuous precipitation in MoNi alloy

1987 ◽  
Vol 35 (8) ◽  
pp. 2145-2150 ◽  
Author(s):  
Kwang-Ryeol Lee ◽  
Young-Joon Baik ◽  
Duk N. Yoon
1990 ◽  
Vol 205 ◽  
Author(s):  
R.S. May ◽  
B. Evans

AbstractIn situ observations of CIGM in CaCO3 bicrystals with a SrCO3 solute source were made. The change in boundary orientation and migration rate were compared with solute concentration. The liquid film model for coherency strain Induced migration was generalized to any non-cubic system and applied to CaCO3-SrCO3. The coherent layer was modeled as a thin film on an infinite half-space. The strain energy was found from solution of the Hooke's law expressions transformed to the appropriate coordinate system. For triclinic or monoclinic films the strain tensor was found by an eigenvector decomposition of the transformation matrix that defined the lattice parameter change with composition. High anisotropy of Vegard's law constants for CaCO3-SrCO3 caused (111) to have the lowest coherency strain per unit solute. Surfaces perpendicular to (111) in coherent equilibria were predicted to have half the solute concentration and three times the migration driving force of those perpendicular to (111). However, no correlation between solute concentration and boundary orientation was observed. Ambiguous and contradictory evidence for a relationship between solute concentration, boundary orientation, and migration rate was found. The self-stress state of a grain boundary in a solute diffusion field may be better modelled as hydrostatic rather than plane stress. Hydrostatic compression may interact with the boundary excess volume and cause a PV driving force for migration. Predictions based on coherent equilibrium at a surface have not been tested for that geometry in calcite; they should be tested before they are applied to grain boundaries.


1997 ◽  
Vol 37 (3) ◽  
pp. 245-251 ◽  
Author(s):  
E. Rabkin ◽  
V. Semenov ◽  
W. Gust

2004 ◽  
Vol 261-263 ◽  
pp. 75-80
Author(s):  
G.H. Nie ◽  
H. Xu

In this paper elastic stress field in an elliptic inhomogeneity embedded in orthotropic media due to non-elastic deformation is determined by the complex function method and the principle of minimum strain energy. Two complex parameters are expressed in a general form, which covers all characterizations of the degree of anisotropy for any ideal orthotropic elastic body. The stress acting on the long side of ellipse can be considered as a crack driving force and applied in failure and fatigue analysis of composites. For some special cases, the resulting solutions will reduce to the known results.


1996 ◽  
Vol 436 ◽  
Author(s):  
R. P. Vinci ◽  
J. C. Bravman

AbstractWe have modeled the effects of grain aspect ratio on strain energy density in (100)-oriented grains in a (111)-textured Cu film on a Si substrate. Minimization of surface energy, interface energy, and strain energy density (SED) drives preferential growth of grains of certain crystallographic orientations in thin films. Under conditions in which the SED driving force exceeds the surface- and interface-energy driving forces, Cu films develop abnormally large (100) oriented grains during annealing. In the elastic regime the SED differences between the (100) grains and the film average arise from elastic anisotropy. Previous analyses indicate that several factors (e.g. elimination of grain boundaries during grain growth) may alter the magnitude of the SED driving force. We demonstrate, using finite element modeling of a single columnar (100) grain in a (111) film, that changes in grain aspect ratio can significantly affect the SED driving force. A minimum SED driving force is found for (100) Cu grains with diameters on the order of the film thickness. In the absence of other stagnation mechanisms, such behavior could cause small grains to grow abnormally and then stagnate while large grains continue to grow. This would lead to a bimodal grain size distribution in the (100) grains preferred by the SED minimization.


2005 ◽  
Vol 20 (9) ◽  
pp. 2314-2321 ◽  
Author(s):  
K. Zhao ◽  
Y.H. Ma ◽  
L.H. Lou ◽  
Z.Q. Hu

It was found that directional coarsening was induced by phase transformation stress due to non-uniform distribution of μ phase in an experimental nickel-based superalloy. The mechanism based on the existing diffusion and coherency strain energy theory has been discussed. It was concluded that directional coarsening was the course of dissolving of γ′ portion with high free energy, diffusing and growing on the existed γ′ particles along a preferential direction.


Sign in / Sign up

Export Citation Format

Share Document