Looking at handwriting generation from a velocity control perspective

1993 ◽  
Vol 82 (1-3) ◽  
pp. 89-101 ◽  
Author(s):  
Réjean Plamondon
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


Author(s):  
Junzhao Han ◽  
Wenhua Chen

To limit velocity fluctuations and to achieve a controllable jerk value in a glass polishing process, a new velocity control algorithm is proposed based on nonuniform rational B-splines (NURBS). The key of this algorithm is replacing the traditional linear acceleration–deceleration with flexible NURBS acceleration–deceleration. Based on the linear acceleration–deceleration algorithm, the control points of the NURBS curve are confirmed, and the final velocity of the polishing wheel center is solved using the Preston equation. With jerk continuity and limitations of the servo system, nonlinear equations are constructed, and the weighting factors corresponding to the control points are obtained. Cubic velocity control equations can be derived from the obtained feature parameters, which include the final velocity, control points, weighting factors and knot vectors. Based on the proposed NURBS acceleration–deceleration algorithm, a fourth-order Runge–Kutta formula was used to obtain the initial points, and the Milne–Hamming equation was used to predict and correct the next point. The predictor-corrector interpolation algorithm for parametric trajectory was implemented during the polishing process. The experimental results indicate that the proposed approach guarantees limited fluctuations of the relative velocity at contact points and ensure smoother velocity changes at dangerous points.


Optica ◽  
2017 ◽  
Vol 4 (8) ◽  
pp. 945 ◽  
Author(s):  
Zhilin Xu ◽  
Yiyang Luo ◽  
Qizhen Sun ◽  
Chengbo Mou ◽  
Yue Li ◽  
...  

2005 ◽  
Vol 42 (6) ◽  
pp. 401-408 ◽  
Author(s):  
Satoshi Akiyama ◽  
Hideto Yoshida ◽  
Kunihiro Fukui ◽  
Kouichiro Ono ◽  
Ryota Nobukiyo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document