final velocity
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 2)

Author(s):  
Saeid Younesi ◽  
Alireza Rabbani ◽  
Filipe Manuel Clemente ◽  
Rui Silva ◽  
Hugo Sarmento ◽  
...  

The aim of this cohort study was two-fold: (i) to analyze within-group changes of final velocity in a 30-15 intermittent fitness test (VIFT), final velocity in a Vameval test (Vvameval), 20-m sprint and countermovement jump (CMJ); (ii) to explore the relationships between VIFT and Vvameval outcomes and their changes with internal and external loads. Twenty-two professional soccer players (mean ± SD; age 27.2 ± 3.4 years, height 174.2 ± 3.6 cm, body mass 69.1 ± 6.4 kg, and body fat 10.4 ± 4.1%, 3.1 ± 1.5 years in the club) participated in this study. External and internal loads were obtained using global positioning system, heart rate and rate of perceived effort (sRPE) after each training session. Players were assessed in CMJ, 20-m sprint, Vameval and 30-15 intermittent fitness test, before and after the observed period. Very large relationships were observed between VIFT and Vameval for pre- (r = 0.76), post (r = 0.80) and pooled-data (r = 0.81). Vvameval showed less sensitivity (−22.4%, [−45.0 to 9.4]), ES −0.45 [−1.05 to 0.16]) than VIFT. ∆VIFT had unclear associations with all sRPE, but had moderate correlations with objective internal and external measures, while, ∆Vvameval varied between large and very large relationships with all sRPE, but had unclear associations with all other selected training loads. Objective internal and external loads may be used to track aerobic power related changes from VIFT.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hadi Ghaderi ◽  
Meysam Yadegar ◽  
Nader Meskin ◽  
Mohammad Noorizadeh

2020 ◽  
Vol 73 (1) ◽  
pp. 193-201
Author(s):  
Yusuf Köklü ◽  
Utku Alemdaroğlu ◽  
Ramazan Demirhan ◽  
Yunus Arslan

AbstractThe purpose of this study was to compare the incremental running tests performed by young soccer players on a treadmill (Tr) and in the field (FTcod: 100 m change of direction and FTcir: 100 m circle). Nineteen players (average age 17.4 ± 1.1 years; body height 172.0 ± 5.7 cm; body mass 68.9 ± 6.7 kg) volunteered to perform incremental Tr , FTcod and FTcir running tests. In all three tests, players ran for 3 min at 8, 10, 12 and 14 km∙h-1 and were given a 1 min rest interval between subsequent stages. Blood lactate concentrations (La-) were measured at 1 min rest intervals and the heart rate (HR) responses of players were recorded during the tests. After a 5 min recovery period, the second part of the test started; players ran at 15 km∙h-1 with velocity increments of 1 km∙h-1 every 1 min until exhaustion. This part was performed to determine maximum HR, maximum La- and the players’ final velocities. The results showed that players had significantly lower La- (F = 6.93, p = 0.07, η2 = 0.46, 95%CI(TR-FTcir) = -1.91/-0.34, 95%CI(TR-FTcod) = -1.59/-0.05) and HR (F = 9.08, p = 0.02, η2 = 0.53, 95%CI(TR-FTcir) = -6.98/-1.68, 95%CI(TR-FTcod) = -7.19/1.08) responses in the Tr test than in the FTcir and FTcod tests at 14 km∙h-1. It was also found that players completed the Tr test (F = 58.22, p = 0.00, η2 = 0.87) at higher final running velocities than the FTcir (95%CI(TR-FTcir) = 1.67/2.78) and FTcod (95%CI(TR-FTcod) = 1.69/2.85) tests. In conclusion, when coaches or sports scientists plan to train at higher running velocities or according to the final velocity in the test, it is advisable to carry out testing in the circumstances under which training will be carried out (in the field or on a treadmill).


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ucup Yusup ◽  
Agus Rusdiana

One of the main components of badminton games is shuttlecock. The shuttlecock home industries in Indonesia mainly employ for about 20-40 freelance workers. The workers in the home industries are able to produce 500-100 slops of shuttlecock daily. The guarantee of the shuttlecock quality produced by home industries, either through the laboratory tests or field tests, is rarely conducted formally. Therefore, we are interested in conducting an academic study on the velocity of the shuttlecocks produced by the workers of the shuttlecock home industries that have been distributed in Indonesia markets. There are eight widely distributed shuttlecock brands produced by the home industries in Indonesia, including Taiso, Saporate, Netra, Arjuna, Kuda Mas, Rivals, Purnama, and Spin. The purpose of this study was to examine the quality of aerodynamics rate of the shuttlecock produced by home industries by comparing the rate of motion of the shuttlecock in different distances started from the initial velocity to the final velocity when the shuttlecocks impact to the ground. The method used in this study was a descriptive qualitative study. The instruments used were three high resolution handy cams, a set of calibration, and the 3D motion analysis system software (Frame Diaz IV). The result of this study showed that the average velocity of the shuttlecock, started from the initial velocity to the final velocity with 5 meter distance, reached 85.0 m/s., while the average final velocity reached 29.8m/s at 5 meter distance. From all of the shuttlecock types tested in the field test for their velocity, it was found that the Spin brand moved with a high velocity with 12.8% of percentage. Meanwhile, the lowest velocity of the shuttlecock was found in the Taiso brand where the percentage was 15.3% in 9 meter and12 meter distances. The study concludes that the average of various shuttlecock brands’ speeds are in the normal category except for the Taiso and Spin brands.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 20 ◽  
Author(s):  
Christina Hamlet ◽  
Wanda Strychalski ◽  
Laura Miller

Nematocysts are stinging organelles used by members of the phylum Cnidaria (e.g., jellyfish, anemones, hydrozoans) for a variety of important functions including capturing prey and defense. Nematocysts are the fastest-known accelerating structures in the animal world. The small scale (microns) coupled with rapid acceleration (in excess of 5 million g) present significant challenges in imaging that prevent detailed descriptions of their kinematics. The immersed boundary method was used to numerically simulate the dynamics of a barb-like structure accelerating a short distance across Reynolds numbers ranging from 0.9–900 towards a passive elastic target in two dimensions. Results indicate that acceleration followed by coasting at lower Reynolds numbers is not sufficient for a nematocyst to reach its target. The nematocyst’s barb-like projectile requires high accelerations in order to transition to the inertial regime and overcome the viscous damping effects normally encountered at small cellular scales. The longer the barb is in the inertial regime, the higher the final velocity of the projectile when it touches its target. We find the size of the target prey does not dramatically affect the barb’s approach for large enough values of the Reynolds number, however longer barbs are able to accelerate a larger amount of surrounding fluid, which in turn allows the barb to remain in the inertial regime for a longer period of time. Since the final velocity is proportional to the force available for piercing the membrane of the prey, high accelerations that allow the system to persist in the inertial regime have implications for the nematocyst’s ability to puncture surfaces such as cellular membranes or even crustacean cuticle.


2019 ◽  
Vol 9 (19) ◽  
pp. 3981 ◽  
Author(s):  
Bin Deng ◽  
Ren Jie Chin ◽  
Yao Tang ◽  
Changbo Jiang ◽  
Sai Hin Lai

Under the action of gravity, buoyancy, and surface tension, bubbles generated by wave breaking will rupture and polymerize, causing the occurrence of high-speed jets and strong turbulence in nearby water bodies, which in turn affects sea–air exchange, sediment transport, and pollutant movement. These interactions are closely related to the shape and velocity changes in single bubbles. Therefore, understanding the motion characteristics of single bubbles is essential. In this research, a large number of experiments were carried out to serve this purpose. The experimental data were used to develop three machine learning models for the bubble final velocity, bubble drag coefficient, and bubble shape, respectively. The performance of the feed forward back propagation neural network (FBNN) models for the final velocity and drag coefficient were evaluated. The coefficient of determination (R2) and root mean squared error (RMSE) value of final velocity prediction model was recorded at 0.83 and 0.0518, respectively. Meanwhile, for the drag coefficient prediction model, the values are 0.92 for R2 and 0.1534 for RMSE. The models can provide a more accurate output if compared to that from the empirical formulas. K-nearest neighbours (KNN), logistic regression, and random forest were applied as the algorithm while developing the bubble shape classification model. The best performance is achieved by the logistic regression.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987708
Author(s):  
Sejong Kim ◽  
Jinho Kim

In this study, a coil gun was designed using a trigger that can discharge a capacitor using physical contact. Controlling the discharge time of the capacitor in a multi-stage coil gun is an important factor for the final velocity of the projectile. To control the discharge time, we used the physical contact of the projectile and the trigger and controlled the point in time when discharge occurs by sensing the projectile location using a sensor. Controlling the discharge using sensors allows for more accurate timing control than physical discharge systems, but the circuit is more complex, and the high current results in a higher risk of malfunction and higher costs. In contrast, systems that use physical contact are simple, have low risk of malfunction, and have low cost. The velocity of the projectile was predicted using the electromagnetic analysis simulation program MAXWELL, and the final velocity of the projectile was compared to the results of a prototype.


Author(s):  
Sabyasachi Mondal ◽  
Radhakant Padhi

This paper presents an approach to compute the optimal time-to-go and final velocity magnitude in the Generalized Explicit (GENEX) guidance. Time-to-go and final velocity magnitude are two critical input parameters in GENEX guidance implementation. Optimal time-to-go selects that optimal solution which yields less cost compared to the costs yielded by other optimal solutions. In addition to it, the input of realistic final velocity lowers the cost further. These developments relax the existing limitations of GENEX, thereby making this optimal guidance law more optimal, effective and generic.


Sign in / Sign up

Export Citation Format

Share Document