Accurate volume determination in the isolatedejecting canine heart from a limited number of two-dimensional echocardiographic cross-sections

1980 ◽  
Vol 45 (2) ◽  
pp. 470 ◽  
Author(s):  
Leland W. Eaton ◽  
W.Lowell Maughan ◽  
James L. Weiss
1964 ◽  
Vol 5 (38) ◽  
pp. 255-257 ◽  
Author(s):  
Charles E. Corbató

AbstractEquations and a graph are presented for calculating gravity anomalies on a two-dimensional glacier model having a horizontal upper boundary and a lower boundary which is a parabola with a vertical axis of symmetry.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


2005 ◽  
Vol 872 ◽  
Author(s):  
Claire L. Callender ◽  
Patrick Dumais ◽  
Chantal Blanchetière ◽  
Christopher J. Ledderhof ◽  
Julian P. Noad

AbstractThe fabrication of two-dimensional uniform arrays of microchannels in borophosphosilicate glass (BPSG) layers deposited by plasma-enhanced chemical vapor deposition (PECVD) is presented. The microchannels, with circular cross-sections of 2-3 μm diameter, are formed by depositing specific thicknesses of BPSG over periodic ridge/space templates etched into underlying silica layers using reactive ion etching (RIE). High temperature annealing results in reflow of the BPSG and the formation of uniform circular or cylindrical voids between the template ridges. Control of microchannel size and geometry through process variables is reported, and exploitation of the microfluidic and optical properties of microchannels and integrated waveguides for applications in optical sensing and photonic devices is demonstrated


2019 ◽  
Vol 9 (21) ◽  
pp. 4485
Author(s):  
Sultan Alqash ◽  
Sharvari Dhote ◽  
Kamran Behdinan

In this paper, a new approach is proposed to predict the far-field noise of a landing gear (LG) based on near-field flow data obtained from multiple two-dimensional (2D) simulations. The LG consists of many bluff bodies with various shapes and sizes. The analysis begins with dividing the LG structure into multiple 2D cross-sections (C-Ss) representing different configurations. The C-Ss locations are selected based on the number of components, sizes, and geometric complexities. The 2D Computational Fluid Dynamics (CFD) analysis for each C-S is carried out first to obtain the acoustic source data. The Ffowcs Williams and Hawkings acoustic analogy (FW-H) is then used to predict the far-field noise. To compensate for the third dimension, a source correlation length (SCL) is assumed based on a perfectly correlated flow. The overall noise of the LG is calculated as the incoherent sum of the predicted noise from all C-Ss. Flow over a circular cylinder is then studied to examine the effect of the 2D CFD results on the predicted noise. The results are in good agreement with reported experimental and numerical data. However, the Strouhal number (St) is over-predicted. The proposed approach provides a reasonable estimation of the LG far-field noise at a low computational cost. Thus, it has the potential to be used as a quick tool to predict the far-field noise from an LG during the design stage.


2020 ◽  
Vol 307 ◽  
pp. 01047
Author(s):  
Gohar Shoukat ◽  
Farhan Ellahi ◽  
Muhammad Sajid ◽  
Emad Uddin

The large energy consumption of membrane desalination process has encouraged researchers to explore different spacer designs using Computational Fluid Dynamics (CFD) for maximizing permeate per unit of energy consumed. In previous studies of zigzag spacer designs, the filaments are modeled as circular cross sections in a two-dimensional geometry under the assumption that the flow is oriented normal to the filaments. In this work, we consider the 45° orientation of the flow towards the three-dimensional zigzag spacer unit, which projects the circular cross section of the filament as elliptical in a simplified two-dimensional domain. OpenFOAM was used to simulate the mass transfer enhancement in a reverse-osmosis desalination unit employing spiral wound membranes lined with zigzag spacer filaments. Properties that impact the concentration polarization and hence permeate flux were analyzed in the domain with elliptical filaments as well as a domain with circular filaments to draw suitable comparisons. The range of variation in characteristic parameters across the domain between the two different configurations is determined. It was concluded that ignoring the elliptical projection of circular filaments to the flow direction, can introduce significant margin of error in the estimation of mass transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document