Glucose formation by the 27,500g supernatant fraction of rat liver homogenate

1972 ◽  
Vol 150 (2) ◽  
pp. 733-741 ◽  
Author(s):  
Kathleen M. McDermott ◽  
Carlo M. Veneziale
1970 ◽  
Vol 48 (1) ◽  
pp. 148-150 ◽  
Author(s):  
J. Torday ◽  
G. Hall ◽  
M. Schweitzer ◽  
C. J. P. Giroud

A supernatant fraction of rat liver homogenate enriched with ATP was used for the biosynthesis of the ester sulfates of several 3H and 14C steroids of the pregn-4-ene series. The method provides a simple means to prepare steroid sulfates of high specific activity for use in either metabolic studies or as reference compounds in the quantification of such conjugates by isotope assays.


1958 ◽  
Vol 36 (5) ◽  
pp. 491-497 ◽  
Author(s):  
J. Pellerin ◽  
A. D'Iorio

3,4-Dihydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxycinnamic acid were separately incubated with L-methionine-methyl-C14 in the presence of rat liver or kidney homogenate. In each case, the radioactive metabolite separated by paper chromatography was found to have migrating properties similar to those of the 3-methoxy-4-hydroxyphenolic acid. This reaction was enhanced by the addition of ATP, Mg++, and reduced glutathione. When 3-hydroxybenzoic acid was incubated in this medium no methylated derivative was obtained. Preliminary experiments indicated that the enzymatic activity was contained mostly in the supernatant fraction. It was also noted that liver homogenate was much more active than kidney homogenate in methylating catechol acids.


1970 ◽  
Vol 117 (5) ◽  
pp. 951-956 ◽  
Author(s):  
P. C. Jocelyn

1. The aerobic loss of GSH added to the supernatant fraction from rat liver is much increased by including the microsome fraction, which both inhibits the concurrent reduction of the GSSG formed and also augments the net oxidation rate. 2. Oxidation occurs with a mixture of dialysed supernatant and a protein-free filtrate; the latter is replaceable by hypoxanthine and the former by xanthine oxidase, whereas fractions lacking this enzyme give no oxidation. 3. In all these instances augmentation occurs with microsomes, with fractions having urate oxidase activity and with the purified enzyme; uric acid and microsomes alone also support the oxidation. 4. Evidence implicating additional protein factors is discussed. 5. It is suggested that GSH oxidation by homogenate is linked through glutathione peroxidase to the reaction of endogenous substrate with supernatant xanthine oxidase and of the uric acid formed with peroxisomal urate oxidase.


1958 ◽  
Vol 36 (1) ◽  
pp. 491-497 ◽  
Author(s):  
J. Pellerin ◽  
A. D'Iorio

3,4-Dihydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxycinnamic acid were separately incubated with L-methionine-methyl-C14 in the presence of rat liver or kidney homogenate. In each case, the radioactive metabolite separated by paper chromatography was found to have migrating properties similar to those of the 3-methoxy-4-hydroxyphenolic acid. This reaction was enhanced by the addition of ATP, Mg++, and reduced glutathione. When 3-hydroxybenzoic acid was incubated in this medium no methylated derivative was obtained. Preliminary experiments indicated that the enzymatic activity was contained mostly in the supernatant fraction. It was also noted that liver homogenate was much more active than kidney homogenate in methylating catechol acids.


1968 ◽  
Vol 109 (3) ◽  
pp. 449-455 ◽  
Author(s):  
W. G. Duncombe ◽  
T. J. Rising

1. Radioactivity from cyclopropane[14C]carboxylic acid is incorporated into fatty acids in vitro by rat and guinea-pig adipose tissue, by rat liver slices and by the supernatant fraction of rat liver homogenate. 2. The labelled acids are different from endogenous straight-chain fatty acids, and evidence is produced that they consist of a cyclopropyl ring in the ω-position, the remainder of the chain being built up from C2 units (not derived from cyclopropanecarboxylic acid) in the normal way via the malonate pathway. 3. It is suggested that these unnatural acids have some metabolic effect related to the hypoglycaemic action of cyclopropanecarboxylic acid.


1969 ◽  
Vol 47 (6) ◽  
pp. 631-635 ◽  
Author(s):  
P. J. Lupien ◽  
C. M. Hinse ◽  
M. Avery

Hepatic cholesterogenesis was studied in pair-fed and pyridoxine-deficient rats as well as in rat liver homogenate systems. Crossover of various subcellular components from pair-fed homogenates into pyridoxine-deficient homogenate systems and vice versa was also done.On 8 weeks of pyridoxine deficiency, acetate-14C incorporation rates into liver cholesterol increased by a factor of approximately 10. The same phenomenon was observed with the total liver homogenate systems.Pyridoxine deficiency does not appear to affect HMG-CoA reductase activity of pyridoxine-deficient liver microsomes sufficiently to explain the rapid acetate-1-14C incorporation rates in this same tissue. The activating system(s) responsible for the 10-fold increase in acetate-14C incorporation rates into pyridoxine-deficient rat liver cholesterol appears to be located in the high-speed supernatant fraction. Other subcellular components such as lysosomes and mitochondria are probably implicated to some extent in this phenomenon. The results indicate that vitamin B6 is necessary for normal hepatic cholesterogenesis in the rat.The significance of these findings and the possible relationship between these factors are discussed.


1976 ◽  
Vol 70 (3) ◽  
pp. 660-670 ◽  
Author(s):  
H Cheng ◽  
M G Farquhar

The distribution of adenylate cyclase (AC) in Golgi and other cell fractions from rat liver was studied using the Golgi isolation procedure of Ehrenreich et al. In liver homogenate the AC activity was found to decay with time, but addition of 1 mM EGTA reduced the rate of enzyme loss. The incorporation of 1 mM EGTA into the sucrose medium used in the initial two centrifugal steps of the Golgi isolation method stabilized the enzyme activity throughout the entire procedure and resulted in good enzyme recovery. In such preparations, AC activity was demonstrated to be associated not only with plasma membranes but also with Golgi membranes and smooth microsomal membranes as well. Furthermore, under the conditions used, enzyme activity was also associated with the 105,000 g x 90 min supernatant fraction. The specific activity of the liver homogenate was found to be 2.9 pmol-mg protein-1-min-1, the nonsedimentabel and microsomal activity was of the same order of magnitude, but the Golgi and plasma membrane activities were much higher. The specific activity of plasma membrane AC was 29 pmol-mg proten-1-min-1. The Golgi activity varied in the three fractions, with the highest activity (14 pmol) in GF1 lowest activity (1.8) in GF2, and intermediate activity (5.5) in GF3, when the Golgi activity was corrected for the presence of content protein, the activity in GF1 became much higher (9 x) than that of the plasma membrane while the activities in GF2 and GF3 were comparable to that of plasma membrane. In all locations studied, the AC was sensitive to NaF stimulation, especially the enzyme associated with Golgi membranes. The activities in plasma and microsomal membranes were stimulated by glucagon, whereas the Golgi and nonsedimentable AC were not.


1972 ◽  
Vol 129 (2) ◽  
pp. 225-229 ◽  
Author(s):  
M. Akhtar ◽  
C. W. Freeman ◽  
A. D. Rahimtula ◽  
D. C. Wilton

1. [3α-3H]Cholesta-7,9-dien-3β-ol is converted in high yield into cholesterol by a 10000gav. supernatant fraction of rat liver homogenate. 2. Incubation of cholesta-7,9-dien-3β-ol with [4-3H]NADPH and rat liver microsomal fractions under anaerobic conditions resulted in3H being incorporated into the 14α-position of cholest-7-en-3β-ol. 3. Under anaerobic conditions in the absence of NADPH cholesta-7,9-dien-3β-ol was isomerized into cholesta-8,14-dien-3β-ol by rat liver microsomal fractions.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3861
Author(s):  
Guo-Ming Dong ◽  
Hang Yu ◽  
Li-Bin Pan ◽  
Shu-Rong Ma ◽  
Hui Xu ◽  
...  

Timosaponin BII is one of the most abundant Anemarrhena saponins and is in a phase II clinical trial for the treatment of dementia. However, the pharmacological activity of timosaponin BII does not match its low bioavailability. In this study, we aimed to determine the effects of gut microbiota on timosaponin BII metabolism. We found that intestinal flora had a strong metabolic effect on timosaponin BII by HPLC-MS/MS. At the same time, seven potential metabolites (M1-M7) produced by rat intestinal flora were identified using HPLC/MS-Q-TOF. Among them, three structures identified are reported in gut microbiota for the first time. A comparison of rat liver homogenate and a rat liver microsome incubation system revealed that the metabolic behavior of timosaponin BII was unique to the gut microbiota system. Finally, a quantitative method for the three representative metabolites was established by HPLC-MS/MS, and the temporal relationship among the metabolites was initially clarified. In summary, it is suggested that the metabolic characteristics of gut microbiota may be an important indicator of the pharmacological activity of timosaponin BII, which can be applied to guide its application and clinical use in the future.


Sign in / Sign up

Export Citation Format

Share Document