scholarly journals Biotransformation of Timosaponin BII into Seven Characteristic Metabolites by the Gut Microbiota

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3861
Author(s):  
Guo-Ming Dong ◽  
Hang Yu ◽  
Li-Bin Pan ◽  
Shu-Rong Ma ◽  
Hui Xu ◽  
...  

Timosaponin BII is one of the most abundant Anemarrhena saponins and is in a phase II clinical trial for the treatment of dementia. However, the pharmacological activity of timosaponin BII does not match its low bioavailability. In this study, we aimed to determine the effects of gut microbiota on timosaponin BII metabolism. We found that intestinal flora had a strong metabolic effect on timosaponin BII by HPLC-MS/MS. At the same time, seven potential metabolites (M1-M7) produced by rat intestinal flora were identified using HPLC/MS-Q-TOF. Among them, three structures identified are reported in gut microbiota for the first time. A comparison of rat liver homogenate and a rat liver microsome incubation system revealed that the metabolic behavior of timosaponin BII was unique to the gut microbiota system. Finally, a quantitative method for the three representative metabolites was established by HPLC-MS/MS, and the temporal relationship among the metabolites was initially clarified. In summary, it is suggested that the metabolic characteristics of gut microbiota may be an important indicator of the pharmacological activity of timosaponin BII, which can be applied to guide its application and clinical use in the future.

2020 ◽  
Author(s):  
Yuping Yang ◽  
Shaoqiu Chen ◽  
Yumin Liu ◽  
Yuanlong Hou ◽  
Xie Xie ◽  
...  

AbstractCalorie restriction (CR) can improve the metabolic balance of adults and elevate the relative abundance of probiotic bacteria in the gut while promoting longevity. However, the interaction between remodeled intestinal flora and metabolic improvement, as well as the mechanism for probiotic bacterial increase, are still unclear. In this study, using a metabolomics platform, we demonstrate for the first time, that CR leads to increased levels of malate and its related metabolites in biological samples. Next, we investigated the effects of CR on the gut microbial genome and the expression of mRNA related to energy metabolism which revealed a partially elevated TCA cycle and a subsequently promoted glyoxylate cycle, from which large amounts of malate can be produced to further impact malate related pathways in the host liver. Through the identification of key “hungry” metabolites produced by the gut microbiota that function in the promotion of autophagy in the host, further insight has been gained about a functional metabolic network important for both host-microbial symbiosis and maintenance of host health.


2010 ◽  
Vol 3 ◽  
pp. IJTR.S3682 ◽  
Author(s):  
Halina Baran ◽  
Berthold Kepplinger ◽  
Markus Draxler

The endogenous neuroinhibitory amino acid receptor antagonist kynurenic acid (KYNA) has been hypothetically linked to physiological processes and to the pathogenesis of several brain disorders. The aim of this study was to search KYNA metabolism i.e. KYNA levels and enzymes synthesising KYNA kynurenine aminotransferase I and II (KAT I and II) in the central nervous system (CNS) and in the peripheral nervous system. Within the investigated species we found a remarkably low KYNA content (3.4 nM) in piglet's serum compared to rat and human serum. Furthermore, in contrast to high KAT activity present in rat and human livers, a lack of KAT I and KAT II activity was found in piglet liver and other piglet peripheral organs. Therefore we attempted to find a reason for the absence of KYNA formation in piglet peripheral tissue and we researched to find if KYNA formation in rat liver homogenate (measured under standard assay conditions for KAT activity) can be influenced by the application of piglet tissue homogenates and other body fluids. KYNA formation in rat liver homogenate was investigated in the presence of piglet liver, piglet brain, rat brain and human brain homogenates, and also in the presence of cerebrospinal fluid (CSF) of the control and of Multiple Sclerosis patients. We found a significant and dose dependent reduction of rat liver KAT I and KAT II activities in the presence of piglet brain, piglet liver, and human brain, but not in the presence of rat brain homogenate. Interestingly, CSF of the human control subjects significantly lowered rat liver KAT I activity. Furthermore, the inhibitory effect of CSF of Multiple Sclerosis (MS) patients was significantly weaker when compared to the CSF of control subjects. Our data, for the first time, indicated the presence of active component(s)—depressing factor—in the body, which was able to block KYNA formation. Reduced KAT inhibitory effect by CSF of MS patients would suggest a lowered “depressing factor” level in CSF of MS patients and is possibly responsible for an enhancement of KYNA formation and for glia activation and gliosis in the CNS. Subsequently, two fractions obtained after centrifugation of CSF from patients with Neuroborreliosis showed a significantly different ability to block KAT I activity. The CSF-sediment fraction exerts a stronger inhibitory activity than the CSF-supernatant fraction, supporting further the presence of a depressing factor. For the first time, data revealed and demonstrated the ability of endogenous components to block KYNA's synthesis. We propose that a glia depressing factor (GDF), which is abundantly present in the body, might simultaneously control glia cell's KAT activity, respectively KYNA synthesis and also glia proliferation. The mechanism(s) of action, the composition and structure of this factor needs to be further elaborated.


2006 ◽  
Vol 29 (12) ◽  
pp. 2359-2361 ◽  
Author(s):  
Tae Chul Moon ◽  
Hwa Shin Hwang ◽  
Zhejiu Quan ◽  
Kun Ho Son ◽  
Cheorl-Ho Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Shen ◽  
Xiao Yang ◽  
Gaofei Li ◽  
Jiayu Gao ◽  
Ying Liang

AbstractThe alterations in the gut microbiota have been reported to be correlated with the development of depression. The purpose of this study was to investigate the changes of intestinal microbiota in depressed patients after antidepressant treatment. We recruited 30 MDD patients (MDD group) and 30 healthy controls (control group). The MDD group received individualized treatment with escitalopram at a maximum dose of 20 mg/day. After depressive symptoms improved to a HAMD scale score > 50%, a fecal sample was collected again and used as the follow-up group. The differences of gut microbiota between patients and controls, the characteristics of gut microbiota under treatment and the potential differences in metabolic functions were thus investigated. The Firmicutes/Bacteroidetes ratio was significantly different within three groups, and the ratio of follow-up group was significantly lower than those of the other two groups. Alpha diversity was significantly higher in MDD group than those of the other groups, and the alpha diversity was not significantly different between control and follow-up groups. The beta diversity of some patients resembled participants in the control group. The metabolic function of gut microbiota after treatment was still different from that of the control group. This study suggests that the intestinal flora of depressed patients has a tendency to return to normal under escitalopram treatment.


Author(s):  
Yue Zhao ◽  
Yuxia Liu ◽  
Shuang Li ◽  
Zhaoyun Peng ◽  
Xiantao Liu ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer-related deaths worldwide (Ferlay et al., Int J Cancer 136:E359–386, 2015). In addition, lung cancer is associated with the highest mortality among all cancer types (Wu et al., Exp Ther Med 16:3004–3010, 2018). Previous studies report that microbiota play an important role in lung cancer. Notably, changes in lung and gut microbiota, are associated with progression of lung cancer. Several studies report that lung and gut microbiome promote lung cancer initiation and development by modulating metabolic pathways, inhibiting the function of immune cells, and producing pro-inflammatory factors. In addition, some factors such as microbiota dysbiosis, affect production of bacteriotoxins, genotoxicity and virulence effect, therefore, they play a key role in cancer progression. These findings imply that lung and gut microbiome are potential markers and targets for lung cancer. However, the role of microbiota in development and progression of lung cancer has not been fully explored. Purpose The aim of this study was to systemically review recent research findings on relationship of lung and gut microbiota with lung cancer. In addition, we explored gut–lung axis and potential mechanisms of lung and gut microbiota in modulating lung cancer progression. Conclusion Pulmonary and intestinal flora influence the occurrence, development, treatment and prognosis of lung cancer, and will provide novel strategies for prevention, diagnosis, and treatment of lung cancer.


1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.


1956 ◽  
Vol 22 (3) ◽  
pp. 558-564 ◽  
Author(s):  
D. Cavallini ◽  
C. De Marco ◽  
B. Mondovì ◽  
F. Trasarti

Sign in / Sign up

Export Citation Format

Share Document