Synthesis of collagen type I, type I trimer and type III by embryonic mouse dental epithelial and mesenchymal cells in vitro

Author(s):  
H. Lesot ◽  
V. Karcher-Djuricic ◽  
J.V. Ruch
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Meisam Asgari ◽  
Neda Latifi ◽  
Hossein K. Heris ◽  
Hojatollah Vali ◽  
Luc Mongeau

1992 ◽  
Vol 286 (1) ◽  
pp. 73-77 ◽  
Author(s):  
M Mörike ◽  
R E Brenner ◽  
G B Bushart ◽  
W M Teller ◽  
U Vetter

Collagen produced in vitro by bone cells isolated from 19 patients with different forms of osteogenesis imperfecta (OI) was analysed. Clinically, four patients were classified as OI type I, 10 patients as OI type III and five patients as OI type IV. Bone cells of 12 of the 19 OI patients produced structurally abnormal type I collagen. Electrophoretically uniformly slower migrating collagen type I alpha-chains were found in one case of OI type I, in seven cases of OI type III and in one case of OI type IV; two cultures of OI type III produced two different populations of collagen type I alpha-chains, and one culture of OI type IV showed reduction-sensitive dimer formation of alpha 1(I) chains, resulting from the inadequate incorporation of a cysteine residue into the triple helical domain of alpha 1(I). Quantitative analysis of collagen metabolism led to the distinction of two groups of cultured OI osteoblasts. In osteoblasts of OI type I, mainly production of collagen was decreased, whereas secretion, processing and pericellular accumulation of (pro)collagen type I was similar to that in control osteoblasts. In contrast, in osteoblasts of OI types III and IV, production as well as secretion, processing and pericellular accumulation of (pro)collagen type I were significantly decreased. Low levels of type I collagen were found irrespective of the presence or absence of structural abnormalities of collagen type I in all OI types.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S158-S158
Author(s):  
L Kandilogiannakis ◽  
E Filidou ◽  
I Drygiannakis ◽  
G Tarapatzi ◽  
K Arvanitidis ◽  
...  

Abstract Background Organoids are self-renewing, 3D structures, consisting of different cell types, with histology and physiology features very close to the physiology of the studied organ. Specifically, human Intestinal Organoids (HIOs) develop epithelial crypts consisting of all subtypes of intestinal epithelial cells which are surrounded by mesenchymal cells. Our aim was to develop 3D HIOs from human embryonic stem cells (hESCs) and examine the expression of fibrotic and mesenchymal factors during their maturation process. Additionally, we investigated the effect of the pro-inflammatory cytokines, IL-1α and TNF-α on the expression of fibrotic and inflammatory mediators in HIOs. Methods The human ESC line (H1) was cultured and then differentiated towards HIOs using commercially available kit. HIOs were characterized by immunofluorescence in all differentiation stages. In order to examine their maturation process, we compared the mRNA expression of fibrotic and mesenchymal markers from passages 1–10. In order to examine their functionality, HIOs from different passages were stimulated with 5ng/ml IL-1α and 50ng/ml TNF-α for 12 hours, total RNA was collected and the fibrotic and inflammatory mRNA expression was examined. The mRNA transcripts of CD90, collagen type I, III, fibronectin, CXCL8, CXCL10 and CXCL11 were measured by reverse transcription quantitative PCR. Results HIOs were successfully developed as they were stained positive for all tested markers throughout their developmental process. Regarding their maturation process, we observed high expression of CD90, collagen type I, type III and fibronectin that was gradually decreased during passages. As for the fibrotic and inflammatory responses from HIOs, we found that the IL-1α and TNF-α stimulation resulted in statistically significant upregulation of the fibrotic factors, fibronectin, collagen type I and type III in culture passages 2 and 4, but had no effect in culture passages 8 and 10. Similarly, IL-1α and TNF-α stimulation led to the statistically significant induction of the inflammatory chemokines CXCL8, CXCL10 and CXCL11 in culture passages 2 and 4, while no effect was observed in culture passages 8 and 10. Conclusion Our findings indicate that HIOs contain a functional mesenchymal component that is gradually diminished during passages. Inflammatory and fibrotic responses of HIOs seem to depend on the fitness of their mesenchyme. IBD studies using HIOs as in vitro models should be performed on early passages, when HIO’s mesenchymal component is still functional.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Masayuki Shimano ◽  
Rei Shibata ◽  
Yukiomi Tsuji ◽  
Noriyuki Ouchi ◽  
Yasuya Inden ◽  
...  

The occurrence and development of atrial fibrillation (AF) are associated with changes in electrical properties and cardiac structure, known as electrical and structural atrial remodeling. AF characterized by atrial remodeling also occurs with obesity-related conditions. Adiponectin, an adipose tissue-derived hormone, exerts beneficial effects on the heart in various pathological conditions. These observations led us to speculate that adiponectin levels affect the development and prevalence of AF. Here, we investigated a potential association between circulating adiponectin levels and atrial remodeling in patients with AF. We measured plasma adiponectin levels, serum carboxy-terminal telopeptide of collagen type I (CITP) levels, as a collagen type I degradation marker, and serum type III procollagen-N-peptide (PIIINP) levels, as a collagen type III synthesis marker in consecutive 414 patients; 225 paroxysmal AF, 81 persistent AF and 108 paroxysmal supra-ventricular tachycardia without AF history (control) patients, who admitted for scheduled radiofrequency catheter ablation. Plasma adiponectin levels were significantly higher in patients with persistent AF compared to paroxysmal AF and control patients (p<0.05). Serum CITP levels, but not serum PIIINP levels, were also higher in patients with persistent AF compared to paroxysmal AF and control patients (p<0.05). In addition, a positive correlation was observed between adiponectin levels and CITP levels (r=0.39, p<0.005) or the P wave duration (r=−0.31, p<0.05) in patients with persistent AF. High plasma adiponectin levels are associated with the presence of persistent AF, which is accompanied by increased CITP levels. Hyperadiponectinemia might also attenuate atrial conduction disturbance. Thus, measurement of plasma adiponectin could be useful for assessment of AF.


Sign in / Sign up

Export Citation Format

Share Document